DOI QR코드

DOI QR Code

Bioactive Lipids and Their Derivatives in Biomedical Applications

  • Park, Jinwon (College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University) ;
  • Choi, Jaehyun (College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University) ;
  • Kim, Dae-Duk (College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University) ;
  • Lee, Seunghee (College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University) ;
  • Lee, Bongjin (College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University) ;
  • Lee, Yunhee (College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University) ;
  • Kim, Sanghee (College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University) ;
  • Kwon, Sungwon (College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University) ;
  • Noh, Minsoo (College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University) ;
  • Lee, Mi-Ock (College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University) ;
  • Le, Quoc-Viet (College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University) ;
  • Oh, Yu-Kyoung (College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University)
  • Received : 2021.06.29
  • Accepted : 2021.07.14
  • Published : 2021.09.01

Abstract

Lipids, which along with carbohydrates and proteins are among the most important nutrients for the living organism, have a variety of biological functions that can be applied widely in biomedicine. A fatty acid, the most fundamental biological lipid, may be classified by length of its aliphatic chain, and the short-, medium-, and long-chain fatty acids and each have distinct biological activities with therapeutic relevance. For example, short-chain fatty acids have immune regulatory activities and could be useful against autoimmune disease; medium-chain fatty acids generate ketogenic metabolites and may be used to control seizure; and some metabolites oxidized from long-chain fatty acids could be used to treat metabolic disorders. Glycerolipids play important roles in pathological environments, such as those of cancers or metabolic disorders, and thus are regarded as a potential therapeutic target. Phospholipids represent the main building unit of the plasma membrane of cells, and play key roles in cellular signaling. Due to their physical properties, glycerophospholipids are frequently used as pharmaceutical ingredients, in addition to being potential novel drug targets for treating disease. Sphingolipids, which comprise another component of the plasma membrane, have their own distinct biological functions and have been investigated in nanotechnological applications such as drug delivery systems. Saccharolipids, which are derived from bacteria, have endotoxin effects that stimulate the immune system. Chemically modified saccharolipids might be useful for cancer immunotherapy or as vaccine adjuvants. This review will address the important biological function of several key lipids and offer critical insights into their potential therapeutic applications.

Keywords

Acknowledgement

This research was supported by grants from the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT, Republic of Korea (NRF-2021R1A2B5B03002123; NRF-2018R1A5A2024425).

References

  1. Agassandian, M. and Mallampalli, R. K. (2013) Surfactant phospholipid metabolism. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1831, 612-625. https://doi.org/10.1016/j.bbalip.2012.09.010
  2. Alabdulkarim, B., Bakeet, Z. A. N. and Arzoo, S. (2012) Role of some functional lipids in preventing diseases and promoting health. J. King Saud Univ. Sci. 24, 319-329. https://doi.org/10.1016/j.jksus.2012.03.001
  3. Albracht-Schulte, K., Gonzalez, S., Jackson, A., Wilson, S., Ramalingam, L., Kalupahana, N. S. and Moustaid-Moussa, N. (2019) Eicosapentaenoic acid improves hepatic metabolism and reduces inflammation independent of obesity in high-fat-fed mice and in HepG2 cells. Nutrients 11, 599. https://doi.org/10.3390/nu11030599
  4. Arranz-Nicolas, J., Ogando, J., Soutar, D., Arcos-Perez, R., Meraviglia-Crivelli, D., Manes, S., Merida, I. and Avila-Flores, A. (2018) Diacylglycerol kinase α inactivation is an integral component of the costimulatory pathway that amplifies TCR signals. Cancer Immunol. Immunother. 67, 965-980. https://doi.org/10.1007/s00262-018-2154-8
  5. Augustin, K., Khabbush, A., Williams, S., Eaton, S., Orford, M., Cross, J. H., Heales, S. J. R., Walker, M. C. and Williams, R. S. B. (2018a) Mechanisms of action for the medium-chain triglyceride ketogenic diet in neurological and metabolic disorders. Lancet Neurol. 17, 84-93. https://doi.org/10.1016/S1474-4422(17)30408-8
  6. Augustin, K., Williams, S., Cunningham, M., Devlin, A. M., Friedrich, M., Jayasekera, A., Hussain, M. A., Holliman, D., Mitchell, P., Jenkins, A., Chen, P. E., Walker, M. C. and Williams, R. S. B. (2018b) Perampanel and decanoic acid show synergistic action against AMPA receptors and seizures. Epilepsia 59, e172-e178.
  7. Back, M., Yurdagul, A., Tabas, I., Oorni, K. and Kovanen, P. K. (2019) Inflammation and its resolution in atherosclerosis: mediators and therapeutic opportunities. Nat. Rev. Cardiol. 16, 389-406. https://doi.org/10.1038/s41569-019-0169-2
  8. Barenholz, Y. (2012) Doxil® - The first FDA-approved nano-drug: lessons learned. J. Control. Release 160, 117-134. https://doi.org/10.1016/j.jconrel.2012.03.020
  9. Bashiri, S., Koirala, P., Toth, I. and Skwarczynski, M. (2020) Carbohydrate immune adjuvants in subunit vaccines. Pharmaceutics 12, 965. https://doi.org/10.3390/pharmaceutics12100965
  10. Bergsson, G., Steingrimsson, O. and Thormar, H. (2002) Bactericidal effects of fatty acids and monoglycerides on Helicobacter pylori. Int. J. Antimicrob. Agents 20, 258-262. https://doi.org/10.1016/S0924-8579(02)00205-4
  11. Bisschop, P. H., Bandsma, R. H. J., Stellaard, F., Ter Harmsel, A., Meijer, A. J., Sauerwein, H. P., Kuipers, F. and Romijn, J. A. (2004) Low-fat, high-carbohydrate and high-fat, low-carbohydrate diets decrease primary bile acid synthesis in humans. Am. J. Clin. Nutr. 79, 570-576. https://doi.org/10.1093/ajcn/79.4.570
  12. Boffa, M. B. and Koschinsky, M. L. (2019) Oxidized phospholipids as a unifying theory for lipoprotein(a) and cardiovascular disease. Nat. Rev. Cardiol. 16, 305-318. https://doi.org/10.1038/s41569-018-0153-2
  13. Braverman, N. E. and Moser, A. B. (2012) Functions of plasmalogen lipids in health and disease. Biochim. Biophys. Acta Mol. Basis Dis. 1822, 1442-1452. https://doi.org/10.1016/j.bbadis.2012.05.008
  14. Bridges, D. and Saltiel, A. R. (2015) Phosphoinositides: key modulators of energy metabolism. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1851, 857-866. https://doi.org/10.1016/j.bbalip.2014.11.008
  15. Brinkmann, V., Billich, A., Baumruker, T., Heining, P., Schmouder, R., Francis, G., Aradhye, S. and Burtin, P. (2010) Fingolimod (FTY720): discovery anddevelopment of an oral drug to treatmultiple sclerosis. Nat. Rev. Drug Discov. 9, 883-897. https://doi.org/10.1038/nrd3248
  16. Cha, H. J., He, C., Zhao, H., Dong, Y., An, I. S. and An, S. (2016) Intercellular and intracellular functions of ceramides and their metabolites in skin (review). Int. J. Mol. Med. 38, 16-22. https://doi.org/10.3892/ijmm.2016.2600
  17. Chang, P. V., Hao, L., Offermanns, S. and Medzhitov, R. (2014) The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. Proc. Natl. Acad. Sci. U.S.A. 111, 2247-2252. https://doi.org/10.1073/pnas.1322269111
  18. Chang, P., Augustin, K., Boddum, K., Williams, S., Sun, M., Terschak, J. A., Hardege, J. D., Chen, P. E., Walker, M. C. and Williams, R. S. B. (2016) Seizure control by decanoic acid through direct AMPA receptor inhibition. Brain 139, 431-443. https://doi.org/10.1093/brain/awv325
  19. Chen, Y., She, Y., Lei, J., Wang, D., Wu, S. and Men, K. (2021) Medium chain fatty acids: extraction, isolation, purification, bioactive properties and application. IOP Conf. Ser. Earth Environ. Sci. 705, 012013.
  20. Chen, M., Huang, H., Zhou, P., Zhang, J., Dai, Y., Yang, D., Fan, X. and Pan, H. (2019) Oral phosphatidylcholine improves intestinal barrier function in drug-induced liver injury in rats. Gastroenterol. Res. Pract. 2019, 8723460.
  21. Chen, M. B., Jiang, Q., Liu, Y. Y., Zhang, Y., He, B. S., Wei, M. X., Lu, J. W., Ji, Y. and Lu, P. H. (2015) C6 ceramide dramatically increases vincristine sensitivity both in vivo and in vitro, involving AMP-activated protein kinase-p53 signaling. Carcinogenesis 36, 1061-1070. https://doi.org/10.1093/carcin/bgv094
  22. Choi, M. K. and Song, I. S. (2020) Recent advances in the formulation of sphingolipid anticancer therapeutics. J. Pharm. Investig. 50, 295-307. https://doi.org/10.1007/s40005-020-00475-y
  23. Currie, E., Schulze, A., Zechner, R., Walther, T. C. and Farese, R. V. (2013) Cellular fatty acid metabolism and cancer. Cell Metab. 18, 153-161. https://doi.org/10.1016/j.cmet.2013.05.017
  24. Cutillo, G., Saariaho, A. H. and Meri, S. (2020) Physiology of gangliosides and the role of antiganglioside antibodies in human diseases. Cell. Mol. Immunol. 17, 313-322. https://doi.org/10.1038/s41423-020-0388-9
  25. Czech, M. P. (2003) Dynamics of phosphoinositides in membrane retrieval and insertion. Annu. Rev. Physiol. 65, 791-815. https://doi.org/10.1146/annurev.physiol.65.092101.142522
  26. Da Silva, A., Caldas, A. P. S., Hermsdorff, H. H. M., Bersch-Ferreira, A. C., Torreglosa, C. R., Weber, B. and Bressan, J. (2019) Triglyceride-glucose index is associated with symptomatic coronary artery disease in patients in secondary care. Cardiovasc. Diabetol. 18, 89. https://doi.org/10.1186/s12933-019-0893-2
  27. Dasgupta, S. and Ray, S. W. (2017) Diverse biological functions of sphingolipids in the cns: ceramide and sphingosine regulate myelination in developing brain but stimulate demyelination during pathogenesis of multiple sclerosis. J. Neurol. Psychol. 5, 10.13188/2332-3469.1000035.
  28. Desale, S. E. and Chinnathambi, S. (2021) α-Linolenic acid modulates phagocytosis and endosomal pathways of extracellular tau in microglia. Cell Adh. Migr. 15, 84-100. https://doi.org/10.1080/19336918.2021.1898727
  29. Dial, E. J., Zayat, M., Lopez-Storey, M., Tran, D. and Lichtenberger, L. (2008) Oral phosphatidylcholine preserves the gastrointestinal mucosal barrier during LPS-induced inflammation. Shock 30, 729-733. https://doi.org/10.1097/SHK.0b013e318173e8d4
  30. Dou, X., Gao, N., Yan, D. and Shan, A. (2020) Sodium butyrate alleviates mouse colitis by regulating gut microbiota dysbiosis. Animals 10, 1154. https://doi.org/10.3390/ani10071154
  31. Draznin, B. (2006) Molecular mechanisms of insulin resistance: serine phosphorylation of insulin receptor substrate-1 and increased expression of p85 α: the two sides of a coin. Diabetes 55, 2392-2397. https://doi.org/10.2337/db06-0391
  32. Duscha, A., Gisevius, B., Hirschberg, S., Yissachar, N., Stangl, G. I., Eilers, E., Bader, V., Haase, S., Kaisler, J., David, C., Schneider, R., Troisi, R., Zent, D., Hegelmaier, T., Dokalis, N., Gerstein, S., Del Mare-Roumani, S., Amidror, S., Staszewski, O., Poschmann, G., Stuhler, K., Hirche, F., Balogh, A., Kempa, S., Trager, P., Zaiss, M. M., Holm, J. B., Massa, M. G., Nielsen, H. B., Faissner, A., Lukas, C., Gatermann, S. G., Scholz, M., Przuntek, H., Prinz, M., Forslund, S. K., Winklhofer, K. F., Muller, D. N., Linker, R. A., Gold, R. and Haghikia, A. (2020) Propionic acid shapes the multiple sclerosis disease course by an immunomodulatory mechanism. Cell 180, 1067-1080.e16. https://doi.org/10.1016/j.cell.2020.02.035
  33. Facchin, S., Vitulo, N., Calgaro, M., Buda, A., Romualdi, C., Pohl, D., Perini, B., Lorenzon, G., Marinelli, C., D'Inca, R., Sturniolo, G. C. and Savarino, E. V. (2020) Microbiota changes induced by microencapsulated sodium butyrate in patients with inflammatory bowel disease. Neurogastroenterol. Motil. 32, 13-25.
  34. Fahy, E., Cotter, D., Sud, M. and Subramaniam, S. (2011) Lipid classification, structures and tools. Biochim. Biophys. Acta 1811, 637-647. https://doi.org/10.1016/j.bbalip.2011.06.009
  35. Fan, R., Kim, J., You, M., Giraud, D., Toney, A. M., Shin, S. H., Kim, S. Y., Borkowski, K., Newman, J. W. and Chung, S. (2020) α-Linolenic acid-enriched butter attenuated high fat diet-induced insulin resistance and inflammation by promoting bioconversion of n-3 PUFA and subsequent oxylipin formation. J. Nutr. Biochem. 76, 108285. https://doi.org/10.1016/j.jnutbio.2019.108285
  36. Feng, H., Nakajima, N., Wu, L., Yamashita, M., Lopes, T. J. S., Tsuji, M., Hasegawa, H., Watanabe, T. and Kawaoka, Y. (2019) A glycolipid adjuvant, 7DW8-5, enhances the protective immune response to the current split influenza vaccine in mice. Front. Microbiol. 10, 2157. https://doi.org/10.3389/fmicb.2019.02157
  37. Fernandez, C., Sandin, M., Sampaio, J. L., Almgren, P., Narkiewicz, K., Hoffmann, M., Hedner, T., Wahlstrand, B., Simons, K., Shevchenko, A., James, P. and Melander, O. (2013) Plasma lipid composition and risk of developing cardiovascular disease. PLoS ONE 8, e71846. https://doi.org/10.1371/journal.pone.0071846
  38. Fujino, T., Yamada, T., Asada, T., Tsuboi, Y., Wakana, C., Mawatari, S. and Kono, S. (2017) Efficacy and blood plasmalogen changes by oral administration of plasmalogen in patients with mild Alzheimer's disease and mild cognitive impairment: a multicenter, randomized, double-blind, placebo-controlled trial. EBioMedicine 17, 199-205. https://doi.org/10.1016/j.ebiom.2017.02.012
  39. Geng, S., Zhu, W., Xie, C., Li, X., Wu, J., Liang, Z., Xie, W., Zhu, J., Huang, C., Zhu, M., Wu, R. and Zhong, C. (2016) Medium-chain triglyceride ameliorates insulin resistance and inflammation in high fat diet-induced obese mice. Eur. J. Nutr. 55, 931-940. https://doi.org/10.1007/s00394-015-0907-0
  40. Goto, S., Sakai, S., Kera, J., Suma, Y., Soma, G. I. and Takeuchi, S. (1996) Intradermal administration of lipopolysaccharide in treatment of human cancer. Cancer Immunol. Immunother. 42, 255-261. https://doi.org/10.1007/s002620050279
  41. Han, S., Wang, C., Qin, X., Xia, J. and Wu, A. (2017) LPS alters the immuno-phenotype of glioma and glioma stem-like cells and induces in vivo antitumor immunity via TLR4. J. Exp. Clin. Cancer Res. 36, 83. https://doi.org/10.1186/s13046-017-0552-y
  42. Hannun, Y. A. and Obeid, L. M. (2018) Sphingolipids and their metabolism in physiology and disease. Nat. Rev. Mol. Cell Biol. 19, 175-191. https://doi.org/10.1038/nrm.2017.107
  43. Hannun, Y. A. and Obeid, L. M. (2008) Principles of bioactive lipid signalling: lessons from sphingolipids. Nat. Rev. Mol. Cell Biol. 9, 139-150. https://doi.org/10.1038/nrm2329
  44. Harayama, T. and Riezman, H. (2018) Understanding the diversity of membrane lipid composition. Nat. Rev. Mol. Cell Biol. 19, 281-296. https://doi.org/10.1038/nrm.2017.138
  45. Henderson, S. T., Vogel, J. L., Barr, L. J., Garvin, F., Jones, J. J. and Costantini, L. C. (2009) Study of the ketogenic agent AC-1202 in mild to moderate Alzheimer's disease: a randomized, double-blind, placebo-controlled, multicenter trial. Nutr. Metab. 6, 31. https://doi.org/10.1186/1743-7075-6-31
  46. Henry, B. D., Neill, D. R., Becker, K. A., Gore, S., Bricio-Moreno, L., Ziobro, R., Edwards, M. J., Muhlemann, K., Steinmann, J., Kleuser, B., Japtok, L., Luginbuhl, M., Wolfmeier, H., Scherag, A., Gulbins, E., Kadioglu, A., Draeger, A. and Babiychuk, E. B. (2015) Engineered liposomes sequester bacterial exotoxins and protect from severe invasive infections in mice. Nat. Biotechnol. 33, 81-88. https://doi.org/10.1038/nbt.3037
  47. Huang, H. J., Zhang, A. Y., Cao, H. C., Lu, H. F., Wang, B. H., Xie, Q., Xu, W. and Li, L. J. (2013) Metabolomic analyses of faeces reveals malabsorption in cirrhotic patients. Dig. Liver Dis. 45, 677-682. https://doi.org/10.1016/j.dld.2013.01.001
  48. Husted, A. S., Trauelsen, M., Rudenko, O., Hjorth, S. A. and Schwartz, T. W. (2017) GPCR-mediated signaling of metabolites. Cell Metab. 25, 777-796. https://doi.org/10.1016/j.cmet.2017.03.008
  49. Hyldgaard, M., Sutherland, D. S., Sundh, M., Mygind, T. and Meyer, R. L. (2012) Antimicrobial mechanism of monocaprylate. Appl. Environ. Microbiol. 78, 2957-2965. https://doi.org/10.1128/AEM.07224-11
  50. Juge, N., Gray, J. A., Omote, H., Miyaji, T., Inoue, T., Hara, C., Uneyama, H., Edwards, R. H., Nicoll, R. A. and Moriyama, Y. (2010) Metabolic control of vesicular glutamate transport and release. Neuron 68, 99-112. https://doi.org/10.1016/j.neuron.2010.09.002
  51. Jumina, J., Lavendi, W., Singgih, T., Triono, S., Kurniawan, Y. S. and Koketsu, M. (2019) Preparation of monoacylglycerol derivatives from indonesian edible oil and their antimicrobial assay against Staphylococcus aureus and Escherichia coli. Sci. Rep. 9, 10941. https://doi.org/10.1038/s41598-019-47373-4
  52. Jung, T. W., Kim, S. T., Lee, J. H., Chae, S. I., Hwang, K. W., Chung, Y. H., Kim, H. C., Abd El-Aty, A. M., Lee, T. J., Park, E. S. and Jeong, J. H. (2018) Phosphatidylcholine causes lipolysis and apoptosis in adipocytes through the tumor necrosis factor alpha-dependent pathway. Pharmacology 101, 111-119. https://doi.org/10.1159/000481571
  53. Jung, T. W., Park, T., Park, J., Kim, U., Je, H. D., Kim, H. D., Cho, S. W., Abd El-Aty, A. M., Song, J. H., Kim, H. C., Shin, Y. K. and Jeong, J. H. (2019) Phosphatidylcholine causes adipocyte-specific lipolysis and apoptosis in adipose and muscle tissues. PLoS ONE 14, e0214760. https://doi.org/10.1371/journal.pone.0214760
  54. Kachko, I., Traitel, T., Goldbart, R., Silbert, L., Katz, M., Bashan, N., Jelinek, R., Rudich, A. and Kost, J. (2015) Polymeric carrier-mediated intracellular delivery of phosphatidylinositol-3,4,5-trisphosphate to overcome insulin resistance. J. Drug Target. 23, 698-709. https://doi.org/10.3109/1061186X.2015.1052076
  55. Kadowaki, A., Sada, N., Juge, N., Wakasa, A., Moriyama, Y. and Inoue, T. (2017) Neuronal inhibition and seizure suppression by acetoacetate and its analog, 2-phenylbutyrate. Epilepsia 58, 845-857. https://doi.org/10.1111/epi.13718
  56. Kawano, A., Ariyoshi, W., Yoshioka, Y., Hikiji, H., Nishihara, T. and Okinaga, T. (2019) Docosahexaenoic acid enhances M2 macrophage polarization via the p38 signaling pathway and autophagy. J. Cell. Biochem. 120, 12604-12617. https://doi.org/10.1002/jcb.28527
  57. Khanum, R. and Thevanayagam, H. (2017) Lipid peroxidation: its effects on the formulation and use of pharmaceutical emulsions. Asian J. Pharm. Sci. 12, 401-411. https://doi.org/10.1016/j.ajps.2017.05.003
  58. Khazanov, E., Priev, A., Shillemans, J. P. and Barenholz, Y. (2008) Physicochemical and biological characterization of ceramide-containing liposomes: paving the way to ceramide therapeutic application. Langmuir 24, 6965-6980. https://doi.org/10.1021/la800207z
  59. Kim, C. H. (2021) Control of lymphocyte functions by gut microbiotaderived short-chain fatty acids. Cell. Mol. Immunol. 18, 1161-1171. https://doi.org/10.1038/s41423-020-00625-0
  60. Kim, J., Ahn, M., Choi, Y., Kang, T., Kim, J., Lee, N. H., Kim, G. O. and Shin, T. (2020) Alpha-linolenic acid alleviates dextran sulfate sodium-induced ulcerative colitis in mice. Inflammation 43, 1876-1883. https://doi.org/10.1007/s10753-020-01260-7
  61. Kimura, I., Ichimura, A., Ohue-Kitano, R. and Igarashi, M. (2020) Free fatty acid receptors in health and disease. Physiol. Rev. 100, 171-210. https://doi.org/10.1152/physrev.00041.2018
  62. Klein, M. E., Rieckmann, M., Lucas, H., Meister, A., Loppnow, H. and Mader, K. (2020) Phosphatidylserine (PS) and phosphatidylglycerol (PG) enriched mixed micelles (mm): a new nano-drug delivery system with anti-inflammatory potential? Eur. J. Pharm. Sci. 152, 105451. https://doi.org/10.1016/j.ejps.2020.105451
  63. Ko, C. W., Qu, J., Black, D. D. and Tso, P. (2020) Regulation of intestinal lipid metabolism: current concepts and relevance to disease. Nat. Rev. Gastroenterol. Hepatol. 17, 169-183. https://doi.org/10.1038/s41575-019-0250-7
  64. Koh, A., De Vadder, F., Kovatcheva-Datchary, P. and Backhed, F. (2016) From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell 165, 1332-1345. https://doi.org/10.1016/j.cell.2016.05.041
  65. Kostarnoy, A. V., Gancheva, P. G., Logunov, D. Y., Verkhovskaya, L. V., Bobrov, M. A., Scheblyakov, D. V., Tukhvatulin, A. I., Filippova, N. E., Naroditsky, B. S. and Gintsburg, A. L. (2013) Topical bacterial lipopolysaccharide application affects inflammatory response and promotes wound healing. J. Interferon Cytokine Res. 33, 514-522. https://doi.org/10.1089/jir.2012.0108
  66. Kurek, K., Lukaszuk, B., Piotrowska, D. M., WiesioBek, P., Chabowska, A. M. and Zendzian-Piotrowska, M. (2013) Metabolism, physiological role, and clinical implications of sphingolipids in gastrointestinal tract. BioMed Res. Int. 2013, 908907. https://doi.org/10.1155/2013/908907
  67. Lacour, S., Hammann, A., Grazide, S., Lagadic-Gossmann, D., Athias, A., Sergent, O., Laurent, G., Gambert, P., Solary, E. and Dimanche-Boitrel, M. T. (2004) Cisplatin-induced CD95 redistribution into membrane lipid rafts of HT29 human colon cancer cells. Cancer Res. 64, 3593-3598. https://doi.org/10.1158/0008-5472.CAN-03-2787
  68. Lavelle, A. and Sokol, H. (2020) Gut microbiota-derived metabolites as key actors in inflammatory bowel disease. Nat. Rev. Gastroenterol. Hepatol. 17, 223-237. https://doi.org/10.1038/s41575-019-0258-z
  69. Lee, B., Sur, B. J., Han, J. J., Shim, I., Her, S., Lee, Y. S., Lee, H. J. and Hahm, D. H. (2015) Oral administration of squid lecithin-transphosphatidylated phosphatidylserine improves memory impairment in aged rats. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 56, 1-10. https://doi.org/10.1016/j.pnpbp.2014.07.004
  70. Leuti, A., Fazio, D., Fava, M., Piccoli, A., Oddi, S. and Maccarrone, M. (2020) Bioactive lipids, inflammation and chronic diseases. Adv. Drug Deliv. Rev. 159, 133-169. https://doi.org/10.1016/j.addr.2020.06.028
  71. Li, J., Wang, X., Zhang, T., Wang, C., Huang, Z., Luo, X. and Deng, Y. (2015) A review on phospholipids and their main applications in drug delivery systems. Asian J. Pharm. Sci. 10, 81-98. https://doi.org/10.1016/j.ajps.2014.09.004
  72. Li, X., Fujio, M., Imamura, M., Wu, D., Vasan, S., Wong, C. H., Ho, D. D. and Tsuji, M. (2010) Design of a potent CD1d-binding NKT cell ligand as a vaccine adjuvant. Proc. Natl. Acad. Sci. U.S.A. 107, 13010-13015. https://doi.org/10.1073/pnas.1006662107
  73. Lopez-Toledano, M. A., Saxena, V., Legassie, J. D., Liu, H., Ghanta, A., Riseman, S., Cocilova, C., Daak, A., Thorsteinsson, T., Rabinowicz, A. L. and Sancilio, F. D. (2019) Advanced lipid technologies® (ALT®): a proven formulation platform to enhance the bioavailability of lipophilic compounds. J. Drug Deliv. 2019, 1957360.
  74. Luu, M., Pautz, S., Kohl, V., Singh, R., Romero, R., Lucas, S., Hofmann, J., Raifer, H., Vachharajani, N., Carrascosa, L. C., Lamp, B., Nist, A., Stiewe, T., Shaul, Y., Adhikary, T., Zaiss, M. M., Lauth, M., Steinhoff, U. and Visekruna, A. (2019) The short-chain fatty acid pentanoate suppresses autoimmunity by modulating the metabolic-epigenetic crosstalk in lymphocytes. Nat. Commun. 10, 760. https://doi.org/10.1038/s41467-019-08711-2
  75. Lyu, K., Zhang, D., Nozaki, Y., Zhang, Y., Bhanot, S., Cline, G., Samual, V. and Shulman, G. I. (2018) Membrane sn-1,2 diacylglycerol mediates lipid-induced hepatic insulin resistance in vivo. Diabetes 67, 243-LB.
  76. MacLeod, M. K. L., McKee, A. S., David, A., Wang, J., Mason, R., Kappler, J. W. and Marrack, P. (2011) Vaccine adjuvants aluminum and monophosphoryl lipid a provide distinct signals to generate protective cytotoxic memory CD8 T cells. Proc. Natl. Acad. Sci. U.S.A. 108, 7914-7919. https://doi.org/10.1073/pnas.1104588108
  77. Maeda, N., Kokai, Y., Hada, T., Yoshida, H. and Mizushina, Y. (2013) Oral administration of monogalactosyl diacylglycerol from spinach inhibits colon tumor growth in mice. Exp. Ther. Med. 5, 17-22. https://doi.org/10.3892/etm.2012.792
  78. Maev, I. V., Samsonov, A. A., Palgova, L. K., Pavlov, C. S., Shirokova, E. N., Vovk, E. I. and Starostin, K. M. (2020) Effectiveness of phosphatidylcholine as adjunctive therapy in improving liver function tests in patients with non-alcoholic fatty liver disease and metabolic comorbidities: real-life observational study from Russia. BMJ Open Gastroenterol. 7, e000368. https://doi.org/10.1136/bmjgast-2019-000368
  79. Maki, K. C. and Dicklin, M. R. (2019) Strategies to improve bioavailability of omega-3 fatty acids from ethyl ester concentrates. Curr. Opin. Clin. Nutr. Metab. Care 22, 116-123. https://doi.org/10.1097/MCO.0000000000000537
  80. Marat, A. L. and Haucke, V. (2016) Phosphatidylinositol 3-phosphates-at the interface between cell signalling and membrane traffic. EMBO J. 35, 561-579. https://doi.org/10.15252/embj.201593564
  81. McClements, D. J. (2010) Design of nano-laminated coatings to control bioavailability of lipophilic food components. J. Food Sci. 75, 30-42. https://doi.org/10.1111/j.1750-3841.2009.01452.x
  82. McGarry, J. D. and Foster, D. W. (1980) Regulation of hepatic fatty acid oxidation and ketone body production. Annu. Rev. Biochem. 49, 395-420. https://doi.org/10.1146/annurev.bi.49.070180.002143
  83. Medina, T. P., Gerle, M., Humbert, J., Chu, H., Kopnick, A. L., Barkmann, R., Garamus, V. M., Sanz, B., Purcz, N., Will, O., Appold, L., Damm, T., Suojanen, J., Arnold, P., Lucius, R., Willumeit-Romer, R., Acil, Y., Wiltfang, J., Goya, G. F., Gluer, C. C. and Medina, O. P. (2020) Lipid-iron nanoparticle with a cell stress release mechanism combined with a local alternating magnetic field enables siteactivated drug release. Cancers (Basel) 12, 3767. https://doi.org/10.3390/cancers12123767
  84. Messias, M. C. F., Mecatti, G. C., Priolli, D. G. and De Oliveira Carvalho, P. (2018) Plasmalogen lipids: functional mechanism and their involvement in gastrointestinal cancer. Lipids Health Dis. 17, 41. https://doi.org/10.1186/s12944-018-0685-9
  85. Miao, L., Li, L., Huang, Y., Delcassian, D., Chahal, J., Han, J., Shi, Y., Sadtler, K., Gao, W., Lin, J., Doloff, J. C., Langer, R. and Anderson, D. G. (2019) Delivery of mRNA vaccines with heterocyclic lipids increases anti-tumor efficacy by sting-mediated immune cell activation. Nat. Biotechnol. 37, 1174-1185. https://doi.org/10.1038/s41587-019-0247-3
  86. Milane, L. and Amiji, M. (2021) Clinical approval of nanotechnologybased SARS-CoV-2 mRNA vaccines: impact on translational nanomedicine. Drug Deliv. Transl. Res. 11, 1309-1315. https://doi.org/10.1007/s13346-021-00911-y
  87. Mo, Z., Tang, C., Li, H., Lei, J., Zhu, L., Kou, L., Li, H., Luo, S., Li, C., Chen, W. and Zhang, L. (2020) Eicosapentaenoic acid prevents inflammation induced by acute cerebral infarction through inhibition of NLRP3 inflammasome activation. Life Sci. 242, 117133. https://doi.org/10.1016/j.lfs.2019.117133
  88. Moon, E. K., Wang, L. C., Dolfi, D. V., Wilson, C. B., Ranganathan, R., Sun, J., Kapoor, V., Scholler, J., Pure, E., Milone, M. C., June, C. H., Riley, J. L., Wherry, E. J. and Albelda, S. M. (2014) Multifactorial T-cell hypofunction that is reversible can limit the efficacy of chimeric antigen receptor-transduced human T cells in solid tumors. Clin. Cancer Res. 20, 4262-4273. https://doi.org/10.1158/1078-0432.CCR-13-2627
  89. Moniri, N. H. and Farah, Q. (2021) Short-chain free-fatty acid G protein-coupled receptors in colon cancer. Biochem. Pharmacol. 186, 114483. https://doi.org/10.1016/j.bcp.2021.114483
  90. Morin, C. and Fortin, S. (2017) Docosahexaenoic acid monoglyceride increases carboplatin activity in lung cancer models by targeting EGFR. Anticancer Res. 37, 6015-6023.
  91. Nagachinta, S., Bouzo, B. L., Vazquez-Rios, A. J., Lopez, R. and de la Fuente, M. (2020) Sphingomyelin-based nanosystems (SNS) for the development of anticancer miRNA therapeutics. Pharmaceutics 12, 189. https://doi.org/10.3390/pharmaceutics12020189
  92. Nastasi, C., Candela, M., Bonefeld, C. M., Geisler, C., Hansen, M., Krejsgaard, T., Biagi, E., Andersen, M. H., Brigidi, P., Odum, N., Litman, T. and Woetmann, A. (2015) The effect of short-chain fatty acids on human monocyte-derived dendritic cells. Sci. Rep. 5, 16148. https://doi.org/10.1038/srep16148
  93. N'Goma, J. C. B., Amara, S., Dridi, K., Jannin, V. and Carriere, F. (2012) Understanding the lipid-digestion processes in the GI tract before designing lipid-based drug-delivery systems. Ther. Deliv. 3, 105-124. https://doi.org/10.4155/tde.11.138
  94. Ogretmen, B. (2017) Sphingolipid metabolism in cancer signalling and therapy. Nat. Rev. Cancer 18, 33-50. https://doi.org/10.1038/nrc.2017.96
  95. Oh, D. Y., Talukdar, S., Bae, E. J., Imamura, T., Morinaga, H., Fan, W., Li, P., Lu, W. J., Watkins, S., M. and Olefsky, J. M. (2010) GPR120 is an omega-3 fatty acid receptor mediating potent anti-inflammatory and insulin-sensitizing effects. Cell 142, 687-698. https://doi.org/10.1016/j.cell.2010.07.041
  96. Onodera, T., Futai, E., Kan, E., Abe, N., Uchida, T., Kamio, Y. and Kaneko, J. (2015) Phosphatidylethanolamine plasmalogen enhances the inhibiting effect of phosphatidylethanolamine on γ-secretase activity. J. Biochem. 157, 301-309. https://doi.org/10.1093/jb/mvu074
  97. Parada Venegas, D., De La Fuente, M. K., Landskron, G., Gonzalez, M. J., Quera, R., Dijkstra, G., Harmsen, H. J. M., Faber, K. N. and Hermoso, M. A. (2019) Corrigendum: short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front. Immunol. 10, 1486. https://doi.org/10.3389/fimmu.2019.01486
  98. Paris, F., Fuks, Z., Kang, A., Capodieci, P., Juan, G., Ehleiter, D., Haimovitz-Friedman, A., Cordon-Cardo, C. and Kolesnick, R. (2001) Endothelial apoptosis as the primary lesion initiating intestinal radiation damage in mice. Science 293, 293-297. https://doi.org/10.1126/science.1060191
  99. Park, W. J. and Park, J. W. (2020) The role of sphingolipids in endoplasmic reticulum stress. FEBS Lett. 594, 3632-3651. https://doi.org/10.1002/1873-3468.13863
  100. Parker, M. W. and Feil, S. C. (2005) Pore-forming protein toxins: from structure to function. Prog. Biophys. Mol. Biol. 88, 91-142. https://doi.org/10.1016/j.pbiomolbio.2004.01.009
  101. Pauls, S. D., Rodway, L. A., Winter, T., Taylor, C. G., Zahradka, P. and Aukema, H. M. (2020) Alpha-linolenic acid enhances the phagocytic and secretory functions of alternatively activated macrophages in part via changes to the oxylipin profile. Int. J. Biochem. Cell Biol. 119, 105662. https://doi.org/10.1016/j.biocel.2019.105662
  102. Pauls, S. D., Rodway, L. A., Winter, T., Taylor, C. G., Zahradka, P. and Aukema, H. M. (2018) Anti-inflammatory effects of α-linolenic acid in M1-like macrophages are associated with enhanced production of oxylipins from α-linolenic and linoleic acid. J. Nutr. Biochem. 57, 121-129. https://doi.org/10.1016/j.jnutbio.2018.03.020
  103. Ramana, K. V., Srivastava, S. and Singhal, S. S. (2013) Lipid peroxidation products in human health and disease. Oxid. Med. Cell. Longev. 2013, 583438.
  104. Ramirez, M., Amate, L. and Gil, A. (2001) Absorption and distribution of dietary fatty acids from different sources. Early Hum. Dev. 65 Suppl, S95-S101. https://doi.org/10.1016/S0378-3782(01)00211-0
  105. Rockwell, C. E., Morrison, D. C. and Qureshi, N. (2010) Lipid a-mediated tolerance and cancer therapy. Adv. Exp. Med. Biol. 667, 81-99. https://doi.org/10.1007/978-1-4419-1603-7_8
  106. Sada, N. and Inoue, T. (2018) Electrical control in neurons by the ketogenic diet. Front. Cell. Neurosci. 12, 208. https://doi.org/10.3389/fncel.2018.00208
  107. Saito, O., Svensson, C. I., Buczynski, M. W., Wegner, K., Hua, X. Y., Codeluppi, S., Schaloske, R. H., Deems, R. A., Dennis, E. A. and Yaksh, T. L. (2010) Spinal glial TLR4-mediated nociception and production of prostaglandin E2 and TNF. Br. J. Pharmacol. 160, 1754-1764. https://doi.org/10.1111/j.1476-5381.2010.00811.x
  108. Saito, S., Hernandez-Ono, A. and Ginsberg, H. N. (2007) Dietary 1,3-diacylglycerol protects against diet-induced obesity and insulin resistance. Metabolism 56, 1566-1575. https://doi.org/10.1016/j.metabol.2007.06.024
  109. Salti, G., Ghersetich, I., Tantussi, F., Bovani, B., Lotti, T. (2008) Phosphatidylcholine and sodium deoxycholate in the treatment of localized fat: a double-blind, randomized study. Dermatol. Surg. 34, 60-66. https://doi.org/10.1097/00042728-200801000-00010
  110. Schink, K. O., Tan, K. W. and Stenmark, H. (2016) Phosphoinositides in control of membrane dynamics. Annu. Rev. Cell Dev. Biol. 32, 143-171. https://doi.org/10.1146/annurev-cellbio-111315-125349
  111. Serhan, C. N. and Chiang, N. (2013) Resolution phase lipid mediators of inflammation: agonists of resolution. Curr. Opin. Pharmacol. 13, 632-640. https://doi.org/10.1016/j.coph.2013.05.012
  112. Serhan, C. N., Chiang, N. and Van Dyke, T. E. (2008) Resolving inflammation: dual anti-inflammatory and pro-resolution lipid mediators. Nat. Rev. Immunol. 8, 349-361. https://doi.org/10.1038/nri2294
  113. Shah, N. K., Gupta, S. K., Wang, Z. and Meenach, S. A. (2019) Enhancement of macrophage uptake via phosphatidylserine-coated acetalated dextran nanoparticles. J. Drug Deliv. Sci. Technol. 50, 57-65. https://doi.org/10.1016/j.jddst.2019.01.013
  114. Shetab Boushehri, M. A. and Lamprecht, A. (2019) Challenges of using lipopolysaccharides for cancer immunotherapy and potential delivery-based solutions thereto. Ther. Deliv. 10, 165-187. https://doi.org/10.4155/tde-2018-0076
  115. Shetab Boushehri, M. A., Yazeji, T., Stein, V. and Lamprecht, A. (2019) Modulation of nanostructure-based lipopolysaccharide active immunotherapy in cancer: size and composition determine short- and long-term tolerability. Mol. Pharm. 16, 4507-4518. https://doi.org/10.1021/acs.molpharmaceut.9b00631
  116. Shim, G., Kim, M. G., Park, J. Y. and Oh, Y. K. (2016) Graphene-based nanosheets for delivery of chemotherapeutics and biological drugs. Adv. Drug Deliv. Rev. 105, 205-227. https://doi.org/10.1016/j.addr.2016.04.004
  117. Simon, M. V., Basu, S. K., Qaladize, B., Grambergs, R., Rotstein, N. P. and Mandal, N. (2021) Sphingolipids as critical players in retinal physiology and pathology. J. Lipid Res. 62, 100037. https://doi.org/10.1194/jlr.TR120000972
  118. Simopoulos, A. P. (2016) An increase in the omega-6/omega-3 fatty acid ratio increases the risk for obesity. Nutrients 8, 128. https://doi.org/10.3390/nu8030128
  119. Slotte, J. P. (2013) Biological functions of sphingomyelins. Prog. Lipid Res. 52, 424-437. https://doi.org/10.1016/j.plipres.2013.05.001
  120. So, J., Wu, D., Lichtenstein, A. H., Tai, A. K., Matthan, N. R., Maddipati, K. R. and Lamon-Fava, S. (2021) EPA and DHA differentially modulate monocyte inflammatory response in subjects with chronic inflammation in part via plasma specialized pro-resolving lipid mediators: a randomized, double-blind, crossover study. Atherosclerosis 316, 90-98. https://doi.org/10.1016/j.atherosclerosis.2020.11.018
  121. Song, W., Tiruthani, K., Wang, Y., Shen, L., Hu, M., Dorosheva, O., Qiu, K., Kinghorn, K. A., Liu, R. and Huang, L. (2018) Trapping of lipopolysaccharide to promote immunotherapy against colorectal cancer and attenuate liver metastasis. Adv. Mater. 30, e1805007.
  122. Spite, M., Claria, J. and Serhan, C. N. (2014) Resolvins, Specialized proresolving lipid mediators, and their potential roles in metabolic diseases. Cell Metab. 19, 21-36. https://doi.org/10.1016/j.cmet.2013.10.006
  123. Suhrland, C., Truman, J. P., Obeid, L. M. and Sitharaman, B. (2019) Oxidized graphene nanoparticles as a delivery system for the proapoptotic sphingolipid C6 ceramide. J. Biomed. Mater. Res. A 107, 25-37. https://doi.org/10.1002/jbm.a.36474
  124. Sutter, I., Klingenberg, R., Othman, A., Rohrer, L., Landmesser, U., Heg, D., Rodondi, N., Mach, F., Windecker, S., Matter, C. M., Luscher, T. F., von Eckardstein, A. and Hornemann, T. (2016) Decreased phosphatidylcholine plasmalogens - a putative novel lipid signature in patients with stable coronary artery disease and acute myocardial infarction. Atherosclerosis 246, 130-140. https://doi.org/10.1016/j.atherosclerosis.2016.01.003
  125. Szondy, Z., Sarang, Z., Kiss, B., Garabuczi, E. and Koroskenyi, K. (2017) Anti-inflammatory mechanisms triggered by apoptotic cells during their clearance. Front. Immunol. 8, 909. https://doi.org/10.3389/fimmu.2017.00909
  126. Tanner, G. R., Lutas, A., Martinez-Francois, J. R. and Yellen, G. (2011) Single KATP channel opening in response to action potential firing in mouse dentate granule neurons. J. Neurosci. 31, 8689-8696. https://doi.org/10.1523/JNEUROSCI.5951-10.2011
  127. Thomas, M. K., D'Silva, J. A. and Borole, A. J. (2016) Injection lipolysis with a cocktail of phosphatidylcholine and deoxycholate: an indian experience. Plast. Reconstr. Surg. Glob. Open 4, e861. https://doi.org/10.1097/GOX.0000000000000492
  128. Thomas, M. K., D'Silva, J. A. and Borole, A. J. (2018) Injection lipolysis: a systematic review of literature and our experience with a combination of phosphatidylcholine and deoxycholate over a period of 14 years in 1269 patients of Indian and South East Asian origin. J. Cutan. Aesthet. Surg. 11, 222-228. https://doi.org/10.4103/JCAS.JCAS_117_18
  129. Thompson, B. S., Chilton, P. M., Ward, J. R., Evans, J. T. and Mitchell, T. C. (2005) The low-toxicity versions of LPS, MPL adjuvant and RC529, are efficient adjuvants for CD4+ T cells. J. Leukoc. Biol. 78, 1273-1280. https://doi.org/10.1189/jlb.0305172
  130. Toyoda, T., Kamata, T., Tanaka, K., Ihara, F., Takami, M., Suzuki, H., Nakajima, T., Ikeuchi, T., Kawasaki, Y., Hanaoka, H., Nakayama, T., Yoshino, I. and Motohashi, S. (2020) Phase II study of α-galactosylceramide-pulsed antigen-presenting cells in patients with advanced or recurrent non-small cell lung cancer. J. Immunother. Cancer 8, e000316. https://doi.org/10.1136/jitc-2019-000316
  131. Trompette, A., Gollwitzer, E. S., Yadava, K., Sichelstiel, A. K., Sprenger, N., Ngom-Bru, C., Blanchard, C., Junt, T., Nicod, L. P., Harris, N. L. and Marsland, B. J. (2014) Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat. Med. 20, 159-166. https://doi.org/10.1038/nm.3444
  132. Turpin-Nolan, S. M. and Bruning, J. C. (2020) The role of ceramides in metabolic disorders: when size and localization matters. Nat. Rev. Endocrinol. 16, 224-233. https://doi.org/10.1038/s41574-020-0320-5
  133. Valenzuela, P. L., Carrera-Bastos, P., Galvez, B. G., Ruiz-Hurtado, G., Ordovas, J. M., Ruilope, L. M. and Lucia, A. (2021) Lifestyle interventions for the prevention and treatment of hypertension. Nat. Rev. Cardiol. 18, 251-275. https://doi.org/10.1038/s41569-020-00437-9
  134. van Hell, A. J., Melo, M. N., van Blitterswijk, W. J., Gueth, D. M., Braumuller, T. M., Pedrosa, L. R. C., Song, J. Y., Marrink, S. J., Koning, G. A., Jonkers, J. and Verheij, M. (2013) Defined lipid analogues induce transient channels to facilitate drug-membrane traversal and circumvent cancer therapy resistance. Sci. Rep. 3, 1949. https://doi.org/10.1038/srep01949
  135. van Lummel, M., van Blitterswijk, W. J., Vink, S. R., Veldman, R. J., van der Valk, M. A., Schipper, D., Dicheva, B. M., Eggermont, A. M. M., ten Hagen, T. L. M., Verheij, M. and Koning, G. A. (2011) Enriching lipid nanovesicles with short-chain glucosylceramide improves doxorubicin delivery and efficacy in solid tumors. FASEB J. 25, 280-289. https://doi.org/10.1096/fj.10-163709
  136. van Meer, G., Voelker, D. R. and Feigenson, G. W. (2008) Membrane lipids: where they are and how they behave. Nat. Rev. Mol. Cell Biol. 9, 112-124. https://doi.org/10.1038/nrm2330
  137. Verbeke, R., Lentacker, I., Breckpot, K., Janssens, J., Van Calenbergh, S., De Smedt, S. C. and Dewitte, H. (2019) Broadening the message: a nanovaccine co-loaded with messenger RNA and α-Galcer induces antitumor immunity through conventional and natural killer T cells. ACS Nano 13, 1655-1669. https://doi.org/10.1021/acsnano.8b07660
  138. Vieira, S. A., Zhang, G. and Decker, E. A. (2017) Biological implications of lipid oxidation products. J. Am. Oil Chem. Soc. 94, 339-351. https://doi.org/10.1007/s11746-017-2958-2
  139. Wang, R. X., Lee, J. S., Campbell, E. L. and Colgan, S. P. (2020) Microbiota-derived butyrate dynamically regulates intestinal homeostasis through regulation of actin-associated protein synaptopodin. Proc. Natl. Acad. Sci. U.S.A. 117, 11648-11657. https://doi.org/10.1073/pnas.1917597117
  140. Wang, S. B., Ma, Y. Y., Chen, X. Y., Zhao, Y. Y. and Mou, X. Z. (2019) Ceramide-graphene oxide nanoparticles enhance cytotoxicity and decrease HCC xenograft development: a novel approach for targeted cancer therapy. Front. Pharmacol. 10, 69. https://doi.org/10.3389/fphar.2019.00069
  141. Warren, E. C., Walker, M. C. and Williams, R. S. B. (2018) All you need is fats-for seizure control: using amoeba to advance epilepsy research. Front. Cell. Neurosci. 12, 199. https://doi.org/10.3389/fncel.2018.00199
  142. Watson, H. (2015) Biological membranes. Essays Biochem. 59, 43-70. https://doi.org/10.1042/bse0590043
  143. Welte, M. A. and Gould, A. P. (2017) Lipid droplet functions beyond energy storage. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1862, 1260-1272. https://doi.org/10.1016/j.bbalip.2017.07.006
  144. Won, K. B., Park, G. M., Lee, S. E., Cho, I. J., Kim, H. C., Lee, B. K. and Chang, H. J. (2018) Relationship of insulin resistance estimated by triglyceride glucose index to arterial stiffness. Lipids Health Dis. 17, 268. https://doi.org/10.1186/s12944-018-0914-2
  145. Wood, P. L., Mankidy, R., Ritchie, S., Heath, D., Wood, J. A., Flax, J. and Goodenowe, D. B. (2010) Circulating plasmalogen levels and Alzheimer disease assessment scale-cognitive scores in Alzheimer patients. J. Psychiatry Neurosci. 35, 59-62. https://doi.org/10.1503/jpn.090059
  146. Yamashita, S., Hashimoto, M., Haque, A. M., Nakagawa, K., Kinoshita, M., Shido, O. and Miyazawa, T. (2017) Oral administration of ethanolamine glycerophospholipid containing a high level of plasmalogen improves memory impairment in amyloid β-infused rats. Lipids 52, 575-585. https://doi.org/10.1007/s11745-017-4260-3
  147. Yang, C. and Merlin, D. (2020) Lipid-based drug delivery nanoplatforms for colorectal cancer therapy. Nanomaterials 10, 1424. https://doi.org/10.3390/nano10071424
  148. Yang, E., Singh, B. K., Paustian, A. M. S. and Kambayashi, T. (2016) Diacylglycerol kinase ζ is a target to enhance NK cell function. J. Immunol. 197, 934-941. https://doi.org/10.4049/jimmunol.1600581
  149. Yu, J., Hung, J. T., Wang, S. H., Cheng, J. Y. and Yu, A. L. (2020) Targeting glycosphingolipids for cancer immunotherapy. FEBS Lett. 594, 3602-3618. https://doi.org/10.1002/1873-3468.13917
  150. Zalba, S., Seynhaeve, A. L. B., Brouwers, J. F., Suss, R., Verheij, M. and Ten Hagen, T. L. M. (2020) Sensitization of drug resistant sarcoma tumors by membrane modulation: via short chain sphingolipid-containing nanoparticles. Nanoscale 12, 16967-16979. https://doi.org/10.1039/D0NR02257H
  151. Zarringhalam, K., Zhang, L., Kiebish, M. A., Yang, K., Han, X., Gross, R. W. and Chuang, J. (2012) Statistical analysis of the processes controlling choline and ethanolamine glycerophospholipid molecular species composition. PLoS ONE 7, e37293. https://doi.org/10.1371/journal.pone.0037293
  152. Zhai, L., Sun, N., Han, Z., Jin, H. C. and Zhang, B. (2015) Liposomal short-chain C6 ceramide induces potent anti-osteosarcoma activity in vitro and in vivo. Biochem. Biophys. Res. Commun. 468, 274-280. https://doi.org/10.1016/j.bbrc.2015.10.113
  153. Zhang, C., Maruggi, G., Shan, H. and Li, J. (2019c) Advances in mRNA vaccines for infectious diseases. Front. Immunol. 10, 594. https://doi.org/10.3389/fimmu.2019.00594
  154. Zhang, F., Stephan, S. B., Ene, C. I., Smith, T. T., Holland, E. C. and Stephan, M. T. (2018) Nanoparticles that reshape the tumor milieu create a therapeutic window for effective T-cell therapy in solid malignancies. Cancer Res. 78, 3718-3730. https://doi.org/10.1158/0008-5472.CAN-18-0306
  155. Zhang, S., Lu, X., Wang, B., Zhang, G., Liu, M., Geng, S., Sun, L., An, J., Zhang, Z. and Zhang, H. (2021) A soft anti-virulence liposome realizing the explosive release of antibiotics at an infectious site to improve antimicrobial therapy. J. Mater. Chem. B 9, 147-158. https://doi.org/10.1039/D0TB02255A
  156. Zhang, T., De Waard, A. A., Wuhrer, M. and Spaapen, R. M. (2019a) The role of glycosphingolipids in immune cell functions. Front. Immunol. 10, 90. https://doi.org/10.3389/fimmu.2019.00090
  157. Zhang, X., Matsuda, M., Yaegashi, N., Nabe, T. and Kitatani, K. (2020) Regulation of necroptosis by phospholipids and sphingolipids. Cells 9, 627. https://doi.org/10.3390/cells9030627
  158. Zhang, Y., Springfield, R., Chen, S., Li, X., Feng, X., Moshirian, R., Yang, R. and Yuan, W. (2019b) α-GalCer and iNKT cell-based cancer immunotherapy: realizing the therapeutic potentials. Front. Immunol. 10, 1126. https://doi.org/10.3389/fimmu.2019.01126
  159. Zhao, R., Jiang, J., Li, H., Chen, M., Liu, R., Sun, S., Ma, D., Liang, X. and Wang, S. (2018) Phosphatidylserine-microbubble targetingactivated microglia/macrophage in inflammation combined with ultrasound for breaking through the blood-brain barrier. J. Neuroinflammation 15, 334. https://doi.org/10.1186/s12974-018-1368-1
  160. Zheng, L., Kelly, C. J., Battista, K. D., Schaefer, R., Lanis, J. M., Alexeev, E. E., Wang, R. X., Onyiah, J. C., Kominsky, D. J. and Colgan, S. P. (2017) Microbial-derived butyrate promotes epithelial barrier function through IL-10 receptor-dependent repression of claudin-2. J. Immunol. 199, 2976-2984. https://doi.org/10.4049/jimmunol.1700105
  161. Zhou, F., Ciric, B., Zhang, G. X. and Rostami, A. (2014) Immunotherapy using lipopolysaccharide-stimulated bone marrow-derived dendritic cells to treat experimental autoimmune encephalomyelitis. Clin. Exp. Immunol. 178, 447-458. https://doi.org/10.1111/cei.12440

Cited by

  1. Crosstalk Between Intestinal Serotonergic System and Pattern Recognition Receptors on the Microbiota-Gut-Brain Axis vol.12, 2021, https://doi.org/10.3389/fendo.2021.748254