DOI QR코드

DOI QR Code

Vacuum Pressure Effect on Thermal Conductivity of KLS-1

진공압에 따른 한국형 인공월면토(KLS-1)의 열전도도 평가

  • Jin, Hyunwoo (Dept. of Future & Smart Construction Research, Korea Institute of Civil Engrg. and Building Technology) ;
  • Lee, Jangguen (Dept. of Future & Smart Construction Research, Korea Institute of Civil Engrg. and Building Technology) ;
  • Ryu, Byung Hyun (Dept. of Future & Smart Construction Research, Korea Institute of Civil Engrg. and Building Technology) ;
  • Shin, Hyu-Soung (Dept. of Future & Smart Construction Research, Korea Institute of Civil Engrg. and Building Technology) ;
  • Chung, Taeil (Dept. of Future & Smart Construction Research, Korea Institute of Civil Engrg. and Building Technology)
  • 진현우 (한국건설기술연구원 미래스마트건설연구본부) ;
  • 이장근 (한국건설기술연구원 미래스마트건설연구본부) ;
  • 류병현 (한국건설기술연구원 미래스마트건설연구본부) ;
  • 신휴성 (한국건설기술연구원 미래스마트건설연구본부) ;
  • 정태일 (한국건설기술연구원 미래스마트건설연구본부)
  • Received : 2021.07.27
  • Accepted : 2021.08.03
  • Published : 2021.08.31

Abstract

South Korea, as the 10th country to join the Artemis program led by NASA, is actively supporting various researches related to the lunar exploration. In particular, the utilization of water as a resource in the Moon has been focused since it was discovered that ice exists at the lunar pole as a form of frozen soil. Information on the thermal conductivity of lunar regolith can be used to estimate the existence for ice water extraction by thermal mining. In this study, the vacuum pressure effect on thermal conductivity of KLS-1 was investigated with a DTVC (Dusty Thermal Vacuum Chamber). The reliability of KLS-1 was reconfirmed through comparison with thermal conductivity of known standard lunar regolith simulants such as JSC-1A. An empirical equation to assess thermal conductivity considering dry unit weight and vacuum pressure was proposed. The results from this study can be implemented to simulate lunar cryogenic environment using the DTVC.

최근 우리나라는 미국항공우주국이 주도하는 유인 달 탐사 프로젝트인 아르테미스 프로그램에 10번째 국가로 참여하게 되면서 다방면에서 유관연구를 수행하고 있다. 특히, 달의 극지방에는 동결토 형태로 다량의 물이 존재하는 것으로 밝혀지면서 이를 자원으로 활용하기 위한 연구들이 활발히 진행되고 있다. 달 표면에 자리 잡고 있는 월면토의 열전도도에 관한 정보는 얼음 존재 추정 및 취득을 위한 열 채굴 기술 등에 활용될 수 있다. 본 연구에서는 지반열진공 챔버를 활용하여 진공압에 따른 한국형 인공월면토(KLS-1)의 열전도도를 측정하였다. 기존 연구에서 밝혀진 인공월면토(JSC-1A)와 비교분석을 통해 한국형 인공월면토의 유효성을 재확인하였으며, 건조단위중량 및 진공압에 따른 열전도도 추정이 가능한 경험적 예측모델을 제안하였다. 본 연구에서 도출된 결과는 진공 챔버를 이용한 달 행성의 극저온 환경 구현 시 활용이 가능할 것으로 판단된다.

Keywords

Acknowledgement

본 연구는 한국건설기술연구원의 주요사업인 "극한건설 환경 구현 인프라 및 TRL6 이상급 극한건설 핵심기술 개발(20210190-001)" 과제의 지원으로 수행되었으며, 이에 깊은 감사를 드립니다.

References

  1. Alshibli, K.A. and Hasan, A. (2009), "Strength Properties of JSC1A Lunar Regolith Simulant", J. Geotech. Geoenviron. Eng., Vol. 135, No.5, pp.673-379. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000068
  2. Alzoubi, M.A., Xu, M., Hassani, F.P., Poncet, S., and Sasmito, A.P. (2020), "Artificial Ground Freezing: A Review of Thermal and Hydraulic Aspects", Tunn. Undergr. Sp. Tech., Vol.104, pp. 103534-1-18. https://doi.org/10.1016/j.tust.2020.103534
  3. Carslaw, H.S. and Jaeger, J.C. (1986), "Conduction of Heat in Solids", 2nd Edition, Oxford Univ. Press, Oxford, UK.
  4. Chung, T., Lim, J.Y., Kang, S., Yoo, Y., and Shin, H.S. (2018), "Vacuum Diagnosis and Testing of a Dirty Thermal Vacuum Chamber", Appl. Sci. Converg. Technol., Vol.27, No.6, pp.120-125. https://doi.org/10.5757/asct.2018.27.6.120
  5. Chung, T., Ahn, H., Yoo, Y., and Shin, H.S. (2019), "An Experimental Study on Air Evacuation from Lunar Soil Mass and Lunar Dust behavior for Lunar Surface Environment Simulation", KSCE J. Civ. Eng., Vol.39, No.2, pp.51-58.
  6. Chung, T., Kim, Y.J., Ryu, B.H., and Shin, H.S. (2020), "A Study on Lunar Soil Simulant Pretreatment for Effective Simulation of Lunar Surface Environment", KSCE J. Civ. Eng., Vol.40, No.1, pp.51-58.
  7. Cremers, C.J. and Birkebak, R.C. (1971), "Thermal Conductivity of Fines from Apollo 12", Proc. Lunar Sci. Conf., 2nd, USA, Vol.3, pp.2311-2315.
  8. Cremers, C.J. (1972), "Thermal Conductivity of Apollo 14", Proc. Lunar Sci. Conf., 3rd, USA, Vol.3, pp.2611-2617.
  9. Cremers, C.J. (1975), "Thermophysical Properties of Apollo 14 Fines", J. Geophys. Res., Vol.80, No.32, pp.4466-4470. https://doi.org/10.1029/JB080i032p04466
  10. Cote, J. and Konrad, J.-M. (2005), "A Generalized Thermal Conductivity Model for Soils and Construction Materials", Can. Geotech. J., Vol.42, No.2, pp.443-458. https://doi.org/10.1139/t04-106
  11. David, K., Angel, A.M., Jared, A., Jonathan, B., Cary, B., Dallas, B., Brad, B., Vanessa, C., Justin, C., Blair, D., Chris, D., Barry, F., Jonathan, G., Koki, H., Laura, K., Jim, K., Bernard, K., Philip, M., Laura, M., Phillip, M., Clive, N., Erica, O., Gordon, R., Jim, S., Brandon, S., George, S., Paul, S., Mark, S., Kris, Z., and Guangdong, Z. (2019), "Commercial Lunar Propellant Architecture: A Collaborative Study of Lunar Propellant Production", REACH, Vol.13, pp.100026-1-77. https://doi.org/10.1016/j.reach.2019.100026
  12. De Vries, D.A. (1987), "The Theory of Heat and Moisture Transfer in Porous Media Revisited", Int. J. Heat Mass Transf., Vol.30, No.7, pp.1343-1350. https://doi.org/10.1016/0017-9310(87)90166-9
  13. He, H., Flerchinger, G.N., Kojima, Y., Dyck, M., and Lv, J. (2021), "A Review and Evaluation of 39 Thermal Conductivity Models for Frozen Soils", Geoderma, Vol.382, pp.114694-1-19. https://doi.org/10.1016/j.geoderma.2020.114694
  14. Jin, H., Kim, Y., Ryu, B.H., and Lee, J. (2020), "Experimental Assessment of Manufacturing System Efficiency and Hydrogen Reduction Reaction for Fe(0) Simulation for KLS-1", J. Korean Geotech. Soc., Vol.36, No.8, pp.17-25. https://doi.org/10.7843/KGS.2020.36.8.17
  15. Jin, H., Lee, J., Ryu, B.H., and Go. G.H. (2020), "Experimental and Numerical Study on Hydro-thermal behaviour of Artificial Freezing System with Water flow", J. Korean Geotech. Soc., Vol. 36, No.12, pp.17-25. https://doi.org/10.7843/KGS.2020.36.12.17
  16. Jin, H., Lee, J., Ryu, B.H., Shin, H.S., and Kim, Y.J. (2021), "The Experimental Assessment of Influence Factors on KLS-1 Microwave Sintering", J. Korean Geotech. Soc., Vol.37, No.2, pp.5-17. https://doi.org/10.7843/KGS.2021.37.2.5
  17. Johansen, O. (1975), "Thermal conductivity of soils", Ph.D. thesis, University of Trondheim, Norway.
  18. Ju, G., Bae, J ., Choi, S.J ., Lee, W.B., and Lee, C.J. (2013), "New Korean lunar exploration program (KLEP): an introduction to the objectives, approach, architecture, and analytical results", 64th Int. Astronaut. Congress, Beijing, China.
  19. Kim, Y.J., Ryu, B.H., Jin H., Lee, J., and Shin, H.S. (2021), "Microstructural, mechanical, and thermal properties of microwavesintered KLS-1 lunar regolith simulant", Ceram. Int., Available online, 17 June 2021, https://doi.org/10.1016/j.ceramint.2021.06.098.
  20. Kim, Y.R., Song, Y.J., Bae, J., and Choi, S.W. (2018), "Observational Arc-length Effect on Orbit Determination for KPLO using a Sequential Estimation Technique", J. Astron. Space Sci., Vol.35, No.4, pp.295-308. https://doi.org/10.5140/JASS.2018.35.4.295
  21. Langseth, M.G., Keihm, S.J., and Peters, K. (1976), "Revised Lunar Heat-flow Values", Proc. Lunar Sci. Conf., 7th, USA, pp.3143-3171.
  22. Lee, J.H., Choo, J., Yun, T.S., Lee, J., and Kim, Y.S. (2011), "Loading Effects on Thermal Conductivity of Soils: Particle-scale Study", J. Korean Geotech. Soc., Vol.27, No.9, pp.77-86. https://doi.org/10.7843/kgs.2011.27.9.077
  23. Lipiec, J ., Usowicz, B., and Ferrero, A. (2007), "Impact of Soil Compaction and Wetness on Thermal Properties of Sloping Vineyard Soil", Int. J. Heat Mass Transf., Vol.50, No.19-20, pp. 3837-3847. https://doi.org/10.1016/j.ijheatmasstransfer.2007.02.008
  24. Li, S., Lucey, P.G., Milliken, R.E., Hayne, P.O., Fisher, E., Williams, J.P., Hurley, D.M., and Elphic, R.C. (2018), "Direct Evidence of Surface Exposed Water Ice in the Lunar Polar Regions", Proc. Nat. Acad. Sci., USA.
  25. Lu, N. and Dong, Y. (2015), "Closed-form Equation for Thermal Conductivity of Unsaturated Soils at Room Temperature", J. Geotech. Geoenviron., Vol.141, No.6, pp.04015016-1-12. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001295
  26. Lu, N. and Ge, S. (1996), "Effect of Horizontal Heat and Fluid Flow on the Vertical Temperature Distribution in a Semiconfining Layer", Water Resour. Res., Vol.32, No.5, pp.1449-1453. https://doi.org/10.1029/95WR03095
  27. Lu, N. and Likos, J.W. (2004), "Unsaturated soil mechanics", John Wiley & Sons, Inc., Hoboken, New Jersey.
  28. Lu, S., Ren, T., Gong, Y., and Horton, R. (2007), "An Improved Model for Predicting Soil Thermal Conductivity from Water Content at Room Temperature", Soil Sci. Soc. Am. J., Vol.71, No.1, pp. 8-14. https://doi.org/10.2136/sssaj2006.0041
  29. McKay, D.S., Carter, J.L., Boles, W.W., Allen, C.C., and Allton, J.H. (1994), "JSC-1: A New Lunar Soil Simulant", Proc. Eng. Constr. Oper. Space IV, ASCE, Albuquerque, New Mexico, USA, pp.857-866.
  30. Mitchell, J.K. and Soga, K. (2005), "Fundamentals of soil behaviour", John Wiley & Sons, Inc., Hoboken, New Jersey.
  31. Nagihara, S., Hedlund, M., Zacny, K., and Taylor, P.T. (2014), "Improved Data Reduction Algorithm for the Needle Probe Method Applied to in-situ Thermal Conductivity Measurements of Lunar and Planetary Regoliths", Planet. Space Sci., Vol.92, pp.49-56. https://doi.org/10.1016/j.pss.2013.12.012
  32. Noborio, K., Mcinnes, K., and Heilman, J. (1996), "Two-dimensional Model for Water, Heat, and Solute Transport in Furrow-irrigated Soil: I. Theory.", Soil Sci. Soc. Am. J., Vol.60, No.4, pp.1001-1009. https://doi.org/10.2136/sssaj1996.03615995006000040007x
  33. Nozette, S., Lichtenberg, C.L., Spudis, P., Bonner, R., Ort, W., Malaret, E., Robinson, M., and Shoemaker, E.M. (1996), "The Clementine Bistatic Radar Experiment", Sci., Vol.274, No.5292, pp.1495-1498. https://doi.org/10.1126/science.274.5292.1495
  34. Nozette, S., Spudis, P.D., Robinson, M.S., Bussey, D.B.J., Lichtenberg, C., and Bonner, R. (2001), "Integration of Lunar Polar Remotesensing Data Sets: Evidence for Ice at the Lunar South Pole", J. Geophys. Res.-Planet, Vol.106, No.E10, pp.23253-23266. https://doi.org/10.1029/2000JE001417
  35. Park, H., Park, H., Lee, S.R., and Go, G. (2012), "Estimation of Thermal Conductivity of Weathered Granite Soils", KSCE J. Civ. Eng., Vol.32, No.2C, pp.69-77.
  36. Park, S.S. (2021), "South Korea to join NASA's Artemis project: reports", SPACENEWS, https://spacenews.com/south-korea-to-joinnasas-artemis-project-reports/
  37. Preene, M. and Powrie, W. (2009), "Ground Energy System: From Analysis to Geotechnical Design", Geotechnique, Vol.59, No.3, pp.261-271. https://doi.org/10.1680/geot.2009.59.3.261
  38. Ryu, B.H., Baek, Y., Kim, Y.S., and Chang, I. (2015), "Basic Study for a Korean Lunar Simulant (KLS-1) Development", J. Korean Geotech. Soc., Vol.31, No.7, pp.53-63. https://doi.org/10.7843/kgs.2015.31.7.53
  39. Ryu, B.H., Wang, C.C., and Chang, I. (2018), "Development and Geotechnical Engineering Properties of KLS-1 Lunar Simulant", J. Aerosp. Eng., Vol.31, No.1, pp.0417083-1-11.
  40. Sakatani, N., Ogawa, K., Iijima, Y., Arakawa, M., Honda, R., and Tanaka, S. (2017), "Thermal Conductivity Model for Powdered Materials under Vacuum based on Experimental Studies", AIP Adv., Vol.7, pp.015310-1-23. https://doi.org/10.1063/1.4975153
  41. Sakatani, N., Ogawa, K., Arakawa, M., and Tanaka, S. (2018), "Thermal Conductivity of Lunar Regolith Simulant JSC-1A under Vacuum", ICARUS, Vol.309, pp.13-24. https://doi.org/10.1016/j.icarus.2018.02.027
  42. Sohn, B., Wi, J., Park, S., Lim, J., and Choi, H. (2013), "Evaluation of Conventional Prediction Models for Soil Thermal Conductivity to Design Horizontal Ground Heat Exchangers", J. Korean Geotech. Soc., Vol.29, No.2, pp.5-14. https://doi.org/10.7843/kgs.2013.29.2.5
  43. Wasilewski, T.G., Barcinski, T., and Barchewka, M. (2021), "Experimental Investigations of Thermal Properties of Icy Lunar Regolith and their Influence on Phase Change Interface Movement", Planet. Space. Sci., Vol.200, pp.105197-1-19. https://doi.org/10.1016/j.pss.2021.105197
  44. Yoon, S., Lee, M.S., Kim, G.Y., Lee, S.R., and Kim, M.J. (2017), "A Prediction of Thermal Conductivity for Compacted Bentonite Buffer in the High-level Radioactive Waste Repository", J. Korean Geotech. Soc., Vol.33, No.7, pp.55-64. https://doi.org/10.7843/kgs.2017.33.7.55
  45. Yoon, S., Lee, S.R., Park, H., and Park, S. (2012), "Thermal Conductivity Estimation of Soils using Coil Shaped Ground Heat Exchanger", KSCE J. Civ. Eng., Vol.32, No.5C, pp.177-183.
  46. Zhang, Y.Q., Lu, N., and Ross, B. (1994), "Convective Instability of Moist Gas in a Porous Medium", Int. J. Heat Mass Transf., Vol.37, No.1, pp.129-138. https://doi.org/10.1016/0017-9310(94)90167-8
  47. Zeng, X., He, C., Oravec, H., Wilkinson, A., Agui, J., and Asnani, V. (2010), "Geotechnical Properties of JSC-1A Lunar Soil Simulant", J. Aerosp. Eng., Vol.23, No.2, pp.111-116. https://doi.org/10.1061/(ASCE)AS.1943-5525.0000014