DOI QR코드

DOI QR Code

Image Restoration Algorithm based on Segmented Mask and Standard Deviation in Impulse Noise Environment

임펄스 잡음 환경에서 분할 마스크와 표준편차에 기반한 영상 복원 알고리즘

  • Cheon, Bong-Won (Dept. of Smart Robot Convergence and Application Eng., Pukyong National University) ;
  • Kim, Woo-Young (Dept. of Control and Instrumentation Eng., Pukyong National University) ;
  • Sagong, Byung-Il (Dept. of Control and Instrumentation Eng., Pukyong National University) ;
  • Kim, Nam-Ho (Dept. of Control and Instrumentation Eng., Pukyong National University)
  • Received : 2021.06.23
  • Accepted : 2021.07.22
  • Published : 2021.08.31

Abstract

In modern society, due to the influence of the 4th industrial revolution, camera sensors and image-based automation systems are being used in various fields, and interest in image and signal processing is increasing. In this paper, we propose a digital filter algorithm for image reconstruction in an impulse noise environment. The proposed algorithm divides the image into eight masks in vertical, horizontal, and diagonal directions based on the local mask set in the image, and compares the standard deviation of each segmentation mask to obtain a reference value. The final output is calculated by applying the weight according to the spatial distance and the weight using the reference value to the local mask. To evaluate the performance of the proposed algorithm, it was simulated with the existing algorithm, and the performance was compared using enlarged images and PSNR.

4차 산업 혁명과 IoT 기술의 발전으로 카메라 센서와 영상에 기반한 자동화 시스템이 다양한 분야에서 사용되고 있으며, 영상 및 신호처리의 관심이 높아지고 있다. 본 논문은 임펄스 잡음에 훼손된 영상을 복원하기 위한 디지털 필터 알고리즘을 제안한다. 제안한 알고리즘은 영상에 설정된 로컬 마스크를 기준으로 수직, 수평, 대각선 방향으로 8개의 마스크로 분할하며, 각 분할 마스크의 표준편차를 비교하여 기준값을 구한다. 최종 출력은 공간적 거리에 따른 가중치와 기준값을 사용한 가중치를 로컬 마스크에 적용하여 계산한다. 제안한 알고리즘을 평가하기 위해 기존 알고리즘과 시뮬레이션하였으며, 확대영상과 PSNR 등을 이용하여 성능을 비교하였다.

Keywords

References

  1. C. Yu, M. W. Chen, J. Y. Chen, and J. H. Tang, "Peer Group and Hybrid Vector Filter for Removal of Impulse Noise in Color Images," in 2019 IEEE International Conference on Consumer Electronics, Yilan : Taiwan, pp. 1-2, 2019. DOI: 10.1109/ICCE-TW46550.2019.8992008.
  2. P. S. V. S. Sridhar and R. Caytiles, "Efficient Cloud Data Hosting Availability," Asia-pacific Journal of Convergent Research Interchange, vol. 3, no. 2, pp. 11-19, Jun. 2017. DOI: 10.21742/APJCRI.2017.06.02.
  3. G. C. Pok and K. H. Ryu, "Efficient Block Matching for Removing Impulse Noise," IEEE Signal Processing Letters, vol. 25, no. 8, pp. 1176-1180, Aug. 2018. DOI: 10.1109/LSP.2018.2848846.
  4. C. H. Hsieh, P. C. Huang, and Q. Zhao, "Impulse Noise Replacement with Adaptive Neighborhood Median Filtering," in 2018 International Conference on Machine Learning and Cybernetics, Chengdu : China, pp. 491-496, 2018. DOI: 10.1109/ICMLC.2018.8527058.
  5. W. S. Lee and Y. S. Choi, "Impulse Noise Immune Bayer Image Compression with Direction Estimation for Imaging Sensor," in 2019 26th IEEE International Conference on Electronics, Circuits and Systems, Genoa : Italy, pp. 670-673, 2019. DOI: 10.1109/ICECS46596.2019.8965111.
  6. C. Lin, Y. Li, S. Feng, and M. Huang, "A Two-Stage Algorithm for the Detection and Removal of Random-Valued Impulse Noise based on Local Similarity," IEEE Access, vol. 8, no. 1, pp. 222001-222012, Nov. 2020. DOI: 10.1109/ACCESS.2020.3040760.
  7. M. Mafi, H. Rajaei, M. Cabrerizo, and M. Adjouadi, "A Robust Edge Detection Approach in the Presence of High Impulse Noise Intensity Through Switching Adaptive Median and Fixed Weighted Mean Filtering," IEEE Transactions on Image Processing, vol. 27, no. 11, pp. 5475-5490, Nov. 2018. DOI: 10.1109/TIP.2018.2857448.
  8. P. Satt, N. Sharma, and B. Garg, "Min-Max Average Pooling based Filter for Impulse Noise Removal," IEEE Signal Processing Letters, vol. 27, no. 1, pp. 1475-1479, Aug. 2020. DOI: 10.1109/LSP.2020.3016868.
  9. P. L. Shui and F. P. Wang, "Anti-Impulse-Noise Edge Detection via Anisotropic Morphological Directional Derivatives," IEEE Transactions on Image Processing, vol. 26, no. 10, pp. 4962-4977, Jul. 2017. DOI: 10.1109/TIP. 2017.2726190.
  10. R. Abiko and M. Ikehara, "Blind Denoising of Mixed Gaussian-impulse Noise by Single CNN," in IEEE International Conference on Acoustics, Speech and Signal Processing, Brighton : UK, pp. 1717-1721, 2019. DOI: 10.1109/ICASSP.2019.8683878.