DOI QR코드

DOI QR Code

Molecular dynamics investigation of pull-in instability in graphene sheet under electrostatic and van der Waals forces

  • Received : 2020.11.15
  • Accepted : 2021.07.06
  • Published : 2021.08.25

Abstract

This paper investigates the pull-in instability of graphene sheets. The influence of geometry parameters such as chirality of graphene and length to gap ratio is studied using molecular dynamics (MD). For molecular interactions, the AIREBO potential is used. Furthermore, by applying the electrostatic and van der Waals (vdW) forces, pull-in voltages are calculated. Size effect is estimated, with adding the fringing field effect correction factor to the electrostatic force. In MD simulations, the graphene sheets on the armchair and zigzag structure have been investigated. The results show that the closer the moving electrode to the fixed electrode, the greater the effect of van der Waals force than the electrostatic force. The results also represent that the vdW force and fringing effect on the electrostatic load increases the pull-in deflection and decrease the pull-in voltage. The numerical results of the present study show good agreement with previous analytical and experimental researches.

Keywords

References

  1. Abdi, J., Koochi, A., Kazemi, A. and Abadyan, M. (2011), "Modeling the effects of sizedependence and dispersionforces on the pull-in instability of electrostatic cantilever NEMS using modified couple stress theory", Smart Mater. Struct., 20(5), 055011. https://doi.org/10.1088/0964-1726/20/5/055011
  2. Ansari, R., Ajori, S. and Hassani, R. (2016), "A molecular dynamics investigation into the size-dependent buckling behavior of a novel three-dimensional metallic carbon nanostructure", Superlattice Microst., 97, 125-131. https://doi.org/10.1016/j.spmi.2016.06.012.
  3. Ansari, R., Gholami, R., Shojaei, M.F., Mohammadi, V. and Darabi, MA. (2012), "Surface stress effect on the pull-in instability of hydrostatically and electrostatically actuated rectangular nanoplates with various edge supports", J. Eng. Mater. Technol., 134(4), 041013. https://doi.org/10.1115/1.4007260.
  4. Attia, M.A. and Mohamed, S.A. (2019), "Coupling effect of surface energy and dispersion forces on nonlinear size-dependent pull-in instability of functionally graded micronanoswitches", Acta Mech., 230, 1181-1216. https://doi.org/10.1007/s00707-018-2345-6.
  5. Batra, R.C., Porfiri, M. and Spinello, D. (2008), Pull-In Instability in Elecrostatically Actuated MEMS, Imperial College Press, London, U.K.
  6. Batra, R.C., Porfiri, M. and Spinello, D. (2006), "Capacitance estimate for electrostatically actuated narrow microbeams", Micro Nano Lett., 1(2), 71-73. https://doi.org/10.1049/mnl:20065046.
  7. Cheng, J., Zhe, J. and Wu, X. (2003), "Analytical and finite element model pull-in study of rigid and deformable electrostatic microactuators", J. Micromech. Microeng., 14(1), 57-68. https://doi.org/10.1088/0960-1317/14/1/308.
  8. Dequesnes, M., Rotkin, S. and Aluru, N. (2002), "Calculation of pull-in voltages for carbonnanotube- based nanoelectromechanical switches", Nanotechnology., 13(1), 120-131. https://doi.org/10.1088/0957-4484/13/1/325.
  9. Farazinand, A. and Mohammadimehr, M. (2020), "Nano research for investigating the effect of SWCNTs dimensions on the properties of the simulated nanocomposites: A molecular dynamics simulation", Adv. Nano Res., 9(2), 83-90. http://doi.org/10.12989/anr.2020.9.2.083.
  10. Fakhrabadi, M.M.S., Khorasani, P.K., Rastgoo, A. and Ahmadian, M.T. (2013), "Molecular dynamics simulation of pull-In phenomena in carbon nanotubes with stone-wales defects", Solid State Commun., 157, 38-44. https://doi.org/10.1016/j.ssc.2012.12.016.
  11. Genoese, A., Genoese, A. and Salerno, G. (2020), "In-plane and out-of-plane tensile behavior of single-layer graphene sheets: A new interatomic potential", Acta Mech., 231(7), 2915-2930. https://doi.org/10.1007/s00707-020-02680-0.
  12. Gupta, R.K. (1997), "Electrostatic pull-in test structure design for in-situ mechanical property measurements of microelectromechanical systems", Ph.D. Dissertation, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, U.S.A.
  13. Guo, J.G. and Zhao, Y.P. (2004), "Influence of van der Waals and Casimir forces on electrostatic torsional actuators", J. Microelectromech. S., 13(6), 1027-1035. http://doi.org/10.1109/JMEMS.2004.838390.
  14. Hamaker, H.C. (1937), "The London-van der Waals attraction between spherical particles" Physica, 4(10), 1058-1072. https://doi.org/10.1016/S0031-8914(37)80203-7
  15. Yang, J., Jia, X.L. and Kitipornchai, S. (2008), "Pull-in instability of nano-switches using nonlocal elasticity theory", J. Phys. D Appl. Phys., 41(3), 035103. https://doi.org/10.1088/0022-3727/41/3/035103.
  16. Korobeynikov, S.N., Alyokhin, V.V. and Babichev, A.V. (2018), "Simulation of mechanical parameters of graphene using the DREIDING force field", Acta Mechanica., 229(6), 2343-2378. https://doi.org/10.1007/s00707-018-2115-5.
  17. Kuang, J.H. and Chen, C.J. (2005), "Adomian decomposition method used for solving nonlinear pull-in behavior in electrostatic micro-actuators", Math. Comput. Model., 41, 1479-1491. https://doi.org/10.1016/j.mcm.2005.06.001.
  18. Kumar, B.R. (2018), "Investigation on mechanical vibration of double-walled carbon nanotubes with inter-tube Van der waals forces", Adv. Nano Res., 6(2), 135-145. http://doi.org/10.12989/anr.2018.6.2.135.
  19. Ke, C.H., Pugno, N., Peng, B. and Espinosa, H.D. (2005), "Experiments and modeling of carbon nanotube-based NEMS devices", J. Mech. Phys. Solids., 53(6), 1314-1333. https://doi.org/10.1016/j.jmps.2005.01.007.
  20. Leite, F.L., Bueno, C.C., Da-Roz, A.L., Ziemath, E.C. and Oliveira, O.N. (2012), "Theoretical models for surface forces and adhesion and their measurement using atomic force microscopy", Int. J. Mol. Sci., 13(10), 12773-12856. https://doi.org/10.3390/ijms131012773.
  21. Lv, J., Bai, M. and Cui, W. (2011), "The molecular dynamic simulation on impact and friction characters of nanofluids with many nanoparticles system", Nanosc. Res. Lett., 6(1), 1-8. https://doi.org/10.1186/1556-276X-6-200.
  22. Lin, M., Lee, S. and Chen, C. (2019), "Nonlocal effect on the pullin instability analysis of graphene sheet nano-beam actuator", J. Mech., 35(5), 767-778. https://doi.org/10.1017/jmech.2018.41.
  23. Lu, P., Lee, H.P., Lu, C. and Zhang P.Q. (2007), "Application of nonlocal beam models for carbon nanotubes", Int. J. Solids Struct., 44(16), 5289-5300. https://doi.org/10.1016/j.ijsolstr.2006.12.034.
  24. Lin, W.H. and Zhao, Y.P. (2003), "Dynamic behavior of nanoscale electrostatic actuators", Chinese. Phys. Lett., 20, 2070-2073. https://doi.org/10.1088/0256-307X/20/11/049.
  25. Mousavi, T., Bornassi, S. and Haddadpour H. (2013), "The effect of small scale on the pull-in instability of nano-switches using DQM", Int. J. Solids. Struct., 50(9), 1193-1202. https://doi.org/10.1016/j.ijsolstr.2012.11.024.
  26. Maugis, D. (2000), Contact, Adhesion, and Rupture of Elastic Solids, Springer-Verlag, Berlin, Germany.
  27. Nazemnezhad, R., Zare, M., Hosseini-Hashemi, S. and Shokrollahi, H. (2016), "Molecular dynamics simulation for interlayer interactions of graphene nanoribbons with multiple layers", Superlattice Microst., 98, 228-234. https://doi.org/10.1016/j.spmi.2016.08.036.
  28. Plimpton, S.J. (1995), "Fast parallel algorithms for short-range molecular dynamics", J. Comput. Phys. 117(1), 1-19. https://doi.org/10.1006/jcph.1995.1039.
  29. Ramezani, A., Alasty, A. and Akbari, J. (2007), "Closed-form solutions of the pull-in instability in nano-cantilevers under electrostatic and intermolecular surface forces", Int. J. Solids Struct., 44(14), 4925-4941. https://doi.org/10.1016/j.ijsolstr.2006.12.015.
  30. Rotkin, S.V. (2002), "Analytical calculations for nanoscale electromechanical systems", Electrochem. Soc. Proc., 6, 90-97.
  31. Rokni, H. and Lu, W. (2013), "A continuum model for the static pull-in behavior of graphene nanoribbon electrostatic actuators with interlayer shear and surface energy effects", J. Appl. Phys., 113(15), 153512. https://doi.org/10.1063/1.4800543.
  32. Sedighi, H.M., Daneshmand, F. and Zare, J. (2014), "The influence of dispersion forces on the dynamic pull-in behavior of vibrating nano-cantilever based NEMS including fringing field effect", Arch. Civil Mech. Eng., 14(4), 766-775. https://doi.org/10.1016/j.acme.2014.01.004.
  33. Sutrakar, V.K., Subramanya, N. and Mahapatra, D.R. (2015), "Crack growth prediction and cohesive zone modeling of single crystal aluminum: A molecular dynamics study", Adv. Nano Res., 3(3), 143-168. http://doi.org/10.12989/anr.2015.3.3.143.
  34. Stuart, S.J., Tutein, A.B. and Harrison, J.A. (2000), "A reactive potential for hydrocarbons with inter-molecular interactions", J. Chem. Phys., 112(14), 6472. https://doi.org/10.1063/1.481208.
  35. Taghavi, N. and Nahvi, H. (2013), "Pull-in instability of cantilever and fixed-fixed nano-switches", Eur. J. Mech. A Soild, 41, 123-133. https://doi.org/10.1016/j.euromechsol.2013.03.003.