References
- Abdi, J., Koochi, A., Kazemi, A. and Abadyan, M. (2011), "Modeling the effects of sizedependence and dispersionforces on the pull-in instability of electrostatic cantilever NEMS using modified couple stress theory", Smart Mater. Struct., 20(5), 055011. https://doi.org/10.1088/0964-1726/20/5/055011
- Ansari, R., Ajori, S. and Hassani, R. (2016), "A molecular dynamics investigation into the size-dependent buckling behavior of a novel three-dimensional metallic carbon nanostructure", Superlattice Microst., 97, 125-131. https://doi.org/10.1016/j.spmi.2016.06.012.
- Ansari, R., Gholami, R., Shojaei, M.F., Mohammadi, V. and Darabi, MA. (2012), "Surface stress effect on the pull-in instability of hydrostatically and electrostatically actuated rectangular nanoplates with various edge supports", J. Eng. Mater. Technol., 134(4), 041013. https://doi.org/10.1115/1.4007260.
- Attia, M.A. and Mohamed, S.A. (2019), "Coupling effect of surface energy and dispersion forces on nonlinear size-dependent pull-in instability of functionally graded micronanoswitches", Acta Mech., 230, 1181-1216. https://doi.org/10.1007/s00707-018-2345-6.
- Batra, R.C., Porfiri, M. and Spinello, D. (2008), Pull-In Instability in Elecrostatically Actuated MEMS, Imperial College Press, London, U.K.
- Batra, R.C., Porfiri, M. and Spinello, D. (2006), "Capacitance estimate for electrostatically actuated narrow microbeams", Micro Nano Lett., 1(2), 71-73. https://doi.org/10.1049/mnl:20065046.
- Cheng, J., Zhe, J. and Wu, X. (2003), "Analytical and finite element model pull-in study of rigid and deformable electrostatic microactuators", J. Micromech. Microeng., 14(1), 57-68. https://doi.org/10.1088/0960-1317/14/1/308.
- Dequesnes, M., Rotkin, S. and Aluru, N. (2002), "Calculation of pull-in voltages for carbonnanotube- based nanoelectromechanical switches", Nanotechnology., 13(1), 120-131. https://doi.org/10.1088/0957-4484/13/1/325.
- Farazinand, A. and Mohammadimehr, M. (2020), "Nano research for investigating the effect of SWCNTs dimensions on the properties of the simulated nanocomposites: A molecular dynamics simulation", Adv. Nano Res., 9(2), 83-90. http://doi.org/10.12989/anr.2020.9.2.083.
- Fakhrabadi, M.M.S., Khorasani, P.K., Rastgoo, A. and Ahmadian, M.T. (2013), "Molecular dynamics simulation of pull-In phenomena in carbon nanotubes with stone-wales defects", Solid State Commun., 157, 38-44. https://doi.org/10.1016/j.ssc.2012.12.016.
- Genoese, A., Genoese, A. and Salerno, G. (2020), "In-plane and out-of-plane tensile behavior of single-layer graphene sheets: A new interatomic potential", Acta Mech., 231(7), 2915-2930. https://doi.org/10.1007/s00707-020-02680-0.
- Gupta, R.K. (1997), "Electrostatic pull-in test structure design for in-situ mechanical property measurements of microelectromechanical systems", Ph.D. Dissertation, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, U.S.A.
- Guo, J.G. and Zhao, Y.P. (2004), "Influence of van der Waals and Casimir forces on electrostatic torsional actuators", J. Microelectromech. S., 13(6), 1027-1035. http://doi.org/10.1109/JMEMS.2004.838390.
- Hamaker, H.C. (1937), "The London-van der Waals attraction between spherical particles" Physica, 4(10), 1058-1072. https://doi.org/10.1016/S0031-8914(37)80203-7
- Yang, J., Jia, X.L. and Kitipornchai, S. (2008), "Pull-in instability of nano-switches using nonlocal elasticity theory", J. Phys. D Appl. Phys., 41(3), 035103. https://doi.org/10.1088/0022-3727/41/3/035103.
- Korobeynikov, S.N., Alyokhin, V.V. and Babichev, A.V. (2018), "Simulation of mechanical parameters of graphene using the DREIDING force field", Acta Mechanica., 229(6), 2343-2378. https://doi.org/10.1007/s00707-018-2115-5.
- Kuang, J.H. and Chen, C.J. (2005), "Adomian decomposition method used for solving nonlinear pull-in behavior in electrostatic micro-actuators", Math. Comput. Model., 41, 1479-1491. https://doi.org/10.1016/j.mcm.2005.06.001.
- Kumar, B.R. (2018), "Investigation on mechanical vibration of double-walled carbon nanotubes with inter-tube Van der waals forces", Adv. Nano Res., 6(2), 135-145. http://doi.org/10.12989/anr.2018.6.2.135.
- Ke, C.H., Pugno, N., Peng, B. and Espinosa, H.D. (2005), "Experiments and modeling of carbon nanotube-based NEMS devices", J. Mech. Phys. Solids., 53(6), 1314-1333. https://doi.org/10.1016/j.jmps.2005.01.007.
- Leite, F.L., Bueno, C.C., Da-Roz, A.L., Ziemath, E.C. and Oliveira, O.N. (2012), "Theoretical models for surface forces and adhesion and their measurement using atomic force microscopy", Int. J. Mol. Sci., 13(10), 12773-12856. https://doi.org/10.3390/ijms131012773.
- Lv, J., Bai, M. and Cui, W. (2011), "The molecular dynamic simulation on impact and friction characters of nanofluids with many nanoparticles system", Nanosc. Res. Lett., 6(1), 1-8. https://doi.org/10.1186/1556-276X-6-200.
- Lin, M., Lee, S. and Chen, C. (2019), "Nonlocal effect on the pullin instability analysis of graphene sheet nano-beam actuator", J. Mech., 35(5), 767-778. https://doi.org/10.1017/jmech.2018.41.
- Lu, P., Lee, H.P., Lu, C. and Zhang P.Q. (2007), "Application of nonlocal beam models for carbon nanotubes", Int. J. Solids Struct., 44(16), 5289-5300. https://doi.org/10.1016/j.ijsolstr.2006.12.034.
- Lin, W.H. and Zhao, Y.P. (2003), "Dynamic behavior of nanoscale electrostatic actuators", Chinese. Phys. Lett., 20, 2070-2073. https://doi.org/10.1088/0256-307X/20/11/049.
- Mousavi, T., Bornassi, S. and Haddadpour H. (2013), "The effect of small scale on the pull-in instability of nano-switches using DQM", Int. J. Solids. Struct., 50(9), 1193-1202. https://doi.org/10.1016/j.ijsolstr.2012.11.024.
- Maugis, D. (2000), Contact, Adhesion, and Rupture of Elastic Solids, Springer-Verlag, Berlin, Germany.
- Nazemnezhad, R., Zare, M., Hosseini-Hashemi, S. and Shokrollahi, H. (2016), "Molecular dynamics simulation for interlayer interactions of graphene nanoribbons with multiple layers", Superlattice Microst., 98, 228-234. https://doi.org/10.1016/j.spmi.2016.08.036.
- Plimpton, S.J. (1995), "Fast parallel algorithms for short-range molecular dynamics", J. Comput. Phys. 117(1), 1-19. https://doi.org/10.1006/jcph.1995.1039.
- Ramezani, A., Alasty, A. and Akbari, J. (2007), "Closed-form solutions of the pull-in instability in nano-cantilevers under electrostatic and intermolecular surface forces", Int. J. Solids Struct., 44(14), 4925-4941. https://doi.org/10.1016/j.ijsolstr.2006.12.015.
- Rotkin, S.V. (2002), "Analytical calculations for nanoscale electromechanical systems", Electrochem. Soc. Proc., 6, 90-97.
- Rokni, H. and Lu, W. (2013), "A continuum model for the static pull-in behavior of graphene nanoribbon electrostatic actuators with interlayer shear and surface energy effects", J. Appl. Phys., 113(15), 153512. https://doi.org/10.1063/1.4800543.
- Sedighi, H.M., Daneshmand, F. and Zare, J. (2014), "The influence of dispersion forces on the dynamic pull-in behavior of vibrating nano-cantilever based NEMS including fringing field effect", Arch. Civil Mech. Eng., 14(4), 766-775. https://doi.org/10.1016/j.acme.2014.01.004.
- Sutrakar, V.K., Subramanya, N. and Mahapatra, D.R. (2015), "Crack growth prediction and cohesive zone modeling of single crystal aluminum: A molecular dynamics study", Adv. Nano Res., 3(3), 143-168. http://doi.org/10.12989/anr.2015.3.3.143.
- Stuart, S.J., Tutein, A.B. and Harrison, J.A. (2000), "A reactive potential for hydrocarbons with inter-molecular interactions", J. Chem. Phys., 112(14), 6472. https://doi.org/10.1063/1.481208.
- Taghavi, N. and Nahvi, H. (2013), "Pull-in instability of cantilever and fixed-fixed nano-switches", Eur. J. Mech. A Soild, 41, 123-133. https://doi.org/10.1016/j.euromechsol.2013.03.003.