참고문헌
- Chow AW, Hall CB, Klein JO, Kammer RB, Meyer R, J S Remington. 1992. Evaluation of new anti-infective drugs for the treatment of respiratory tract infections. Infectious Diseases Society of America and the Food and Drug Administration. Clin. Infect. Dis. 15: S62-88.
- Miguel RDV, Harvey SA, LaFramboise WA, Reighard SD, Matthews DB, T L Cherpes. 2013. Human female genital tract infection by the obligate intracellular bacterium Chlamydia trachomatis elicits robust Type 2 immunity. PLoS One 8: e58565. https://doi.org/10.1371/journal.pone.0058565
- Stokes HS, Martens JM, Walder K, Segal Y, Berg ML, A TD Bennett. 2020. Species, sex and geographic variation in Chlamydial prevalence in abundant wild Australian parrots. Sci. Rep. 10: 20478. https://doi.org/10.1038/s41598-020-77500-5
- Stokes HS, Martens JM, Jelocnik M, Walder K, Segal Y, M L Berg, et al. 2020. Chlamydial diversity and predictors of infection in a wild Australian parrot, the Crimson Rosella (Platycercus elegans). Transbound Emerg. Dis. 68: 487-498.
- Butcher R, Sokana O, Jack K, Sui L, Russell C, A Last, et al. 2018. Clinical signs of trachoma are prevalent among Solomon Islanders who have no persistent markers of prior infection with Chlamydia trachomatis. Wellcome Open Res. 3: 14. https://doi.org/10.12688/wellcomeopenres.13423.2
- Butcher R, Handley B, Garae M, Taoaba R, Pickering H, Bong A, et al. 2020. Ocular Chlamydia trachomatis infection, anti-Pgp3 antibodies and conjunctival scarring in Vanuatu and Tarawa, Kiribati before antibiotic treatment for trachoma. J. Infect. 80: 454-461. https://doi.org/10.1016/j.jinf.2020.01.015
- Ramadhani AM, Derrick T, Macleod D, Holland MJ, Burton MJ. 2016. The relationship between active trachoma and ocular Chlamydia trachomatis infection before and after mass antibiotic treatment. PLoS Negl. Trop. Dis. 10: e0005080. https://doi.org/10.1371/journal.pntd.0005080
- Lee JS, Munoz BE, Mkocha H, Gaydos CA, Quinn TC, West SK. 2014. The effect of multiple rounds of mass drug administration on the association between ocular Chlamydia trachomatis infection and follicular trachoma in preschool-aged children. PLoS Negl. Trop. Dis. 8: e2761. https://doi.org/10.1371/journal.pntd.0002761
- Razali N, Hohjoh H, Inazumi T, Maharjan BD, Nakagawa K, Konishi M, et al. 2020. Induced prostanoid synthesis regulates the balance between Th1- and Th2-producing inflammatory cytokines in the thymus of diet-restricted mice. Biol. Pharm. Bull 43: 649-662. https://doi.org/10.1248/bpb.b19-00838
- von Mutius E, Smits HH. 2020. Primary prevention of asthma: from risk and protective factors to targeted strategies for prevention. Lancet 396: 854-866. https://doi.org/10.1016/S0140-6736(20)31861-4
- Zhou F, Liu P, Lv H, Gao Z, Chang W, Xu Y. 2021. miR-31 attenuates murine allergic rhinitis by suppressing interleukin-13-induced nasal epithelial inflammatory responses. Mol. Med. Rep. 23: 42-51.
- Furue M. 2020. Regulation of skin barrier function via competition between AHR axis versus IL-13/IL-4-JAK-STAT6/STAT3 axis: pathogenic and therapeutic implications in atopic dermatitis. J. Clin. Med. 9: 3741-3749. https://doi.org/10.3390/jcm9113741
- Furue M. 2020. Regulation of filaggrin, loricrin, and involucrin by IL-4, IL-13, IL-17A, IL-22, AHR, and NRF2: pathogenic implications in atopic dermatitis. Int. J. Mol. Sci. 21: 5382-5391. https://doi.org/10.3390/ijms21155382
- Snodgrass RG, Benatzy Y, Schmid T, Namgaladze D, Mainka M, Schebb NH, et al. 2021. Efferocytosis potentiates the expression of arachidonate 15-lipoxygenase (ALOX15) in alternatively activated human macrophages through LXR activation. Cell Death Differ. 28: 1301-1316. https://doi.org/10.1038/s41418-020-00652-4
- Mandlik DS, Mandlik SK. 2020. New perspectives in bronchial asthma: pathological, immunological alterations, biological targets, and pharmacotherapy. Immunopharmacol. Immunotoxicol. 42: 521-544. https://doi.org/10.1080/08923973.2020.1824238
- Horvat JC, Starkey MR, Kim RY, Phipps S, Gibson PG, Beagley KW, et al. 2010. Early-life chlamydial lung infection enhances allergic airways disease through age-dependent differences in immunopathology. J. Allergy Clin. Immunol. 125: 617-625. https://doi.org/10.1016/j.jaci.2009.10.018
- Kaiko GE, Phipps S, Hickey DK, Lam CE, Hansbro PM, Foster PS, et al. 2008. Chlamydiamuridarum infection subverts dendritic cell function to promote Th2 immunity and airways hyperreactivity. J. Immunol. 180: 2225-2232. https://doi.org/10.4049/jimmunol.180.4.2225
- Jupelli M, Guentzel MN, Meier PA, Zhong G, Murthy AK, Arulanandam BP. 2008. Endogenous IFN-gamma production is induced and required for protective immunity against pulmonary chlamydial infection in neonatal mice. J. Immunol. 180: 4148-4155. https://doi.org/10.4049/jimmunol.180.6.4148
- Gnarpe J, Gnarpe H, Sundelof B. 1991. Endemic prevalence of Chlamydia pneumoniae in subjectively healthy persons. Scand. J. Infect. Dis. 23: 387-398. https://doi.org/10.3109/00365549109024328
- Schmidt SM, Muller CE, Mahner B, Wiersbitzky SK. 2002. Prevalence, rate of persistence and respiratory tract symptoms of Chlamydia pneumoniae infection in 1211 kindergarten and school age children. Pediatr. Infect. Dis. J. 21: 758-762. https://doi.org/10.1097/00006454-200208000-00012
- Hansbro PM, Starkey MR, Kim RY, Stevens RL, Foster PS, Horvat JC. 2012. Programming of the lung by early-life infection. J. Dev. Orig. Health Dis. 3: 153-158. https://doi.org/10.1017/S2040174412000050
- Finkelman FD, Katona IM, Urban JF Jr, Holmes J, Ohara J, Tung AS. 1988. IL-4 is required to generate and sustain in vivo IgE responses. J. Immunol. 141: 2335-2341.
- Madden KB, Urban JF Jr, Ziltener HJ, Schrader JW, Finkelman FD, Katona IM. 1991. Antibodies to IL-3 and IL-4 suppress helminth-induced intestinal mastocytosis. J. Immunol. 147: 1387-1391.
- Temann UA, Prasad B, Gallup MW, Basbaum C, Ho SB, Flavell RA, et al. 1997. A novel role for murine IL-4 in vivo: induction of MUC5AC gene expression and mucin hypersecretion. Am. J. Respir. Cell Mol. Biol. 16: 471-478. https://doi.org/10.1165/ajrcmb.16.4.9115759
- Hogan SP, Mould A, Kikutani H, Ramsay AJ, Foster PS. 1997. Aeroallergen-induced eosinophilic inflammation, lung damage, and airways hyperreactivity in mice can occur independently of IL-4 and allergen-specific immunoglobulins. J. Clin. Invest. 99: 1329-1339. https://doi.org/10.1172/JCI119292
- Porritt RA, Crother TR. 2016. Chlamydia pneumoniae infection and inflammatory diseases. For. Immunopathol. Dis. Therap. 7: 237-254. https://doi.org/10.1615/ForumImmunDisTher.2017020161
- Hahn DL, Azenabor AA, Beatty WL, Byrne GI. 2002. Chlamydia pneumoniae as a respiratory pathogen. Front. Biosci. 7: e66-76. https://doi.org/10.2741/hahn
- Cheok YY, Lee CYQ, Cheong HC, Looi CY, Wong WF. 2020. Chronic inflammatory diseases at secondary sites ensuing urogenital or pulmonary Chlamydia Infections. Microorganisms 8: 127-132. https://doi.org/10.3390/microorganisms8010127
- Jolly AL, Rau S, Chadha AK, Abdulraheem EA, Dean D. 2019. Stromal fibroblasts drive host inflammatory responses that are dependent on Chlamydia trachomatis strain type and likely influence disease outcomes. mBio 10: e00225-00239.
- Kalman S, Mitchell W, Marathe R, Lammel C, Fan J, Hyman RW, et al. 1999. Comparative genomes of Chlamydia pneumoniae and C. trachomatis. Nat. Genet. 21: 385-389. https://doi.org/10.1038/7716
- Belay T, Martin E, Brown G, Crenshaw R, Street J, Freem A, et al. 2020. Modulation of T helper 1 and T helper 2 immune balance in a murine stress model during Chlamydia muridarum genital infection. PLoS One 15: e0226539. https://doi.org/10.1371/journal.pone.0226539
- Kaiko GE, Phipps S, Hickey DK, Lam CE, Hansbro PM, Foster PS, et al. 2008. Chlamydia muridarum infection subverts dendritic cell function to promote Th2 immunity and airways hyperreactivity. J. Immunol. 180: 2225-2232. https://doi.org/10.4049/jimmunol.180.4.2225
- Yang X. 2003. Role of cytokines in Chlamydia trachomatis protective immunity and immunopathology. Curr. Pharm. Des. 9: 67-73. https://doi.org/10.2174/1381612033392486