Acknowledgement
This research was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. NRF-2019R1F1A1059516). This work was also supported by Korea Institute of Planning and Evaluation for Technology in Food, Agriculture and Forestry (IPET) and Korea Smart Farm R&D Foundation (KosFarm) through Smart Farm Innovation Technology Development Program, funded by Ministry of Agriculture, Food and Rural Affairs (MAFRA) and Ministry of Science and ICT (MSIT), Rural Development Administration (RDA) (No. 421045-03).
References
- Liu CG, Xiao Y, Xia XX, Zhao XQ, Peng L, Srinophakun P, et al. 2019. Cellulosic ethanol production: progress, challenges and strategies for solutions. Biotechnol. Adv. 37: 491-504. https://doi.org/10.1016/j.biotechadv.2019.03.002
- Lynd LR. 2017. The grand challenge of cellulosic biofuels. Nat. Biotechnol. 35: 912-915. https://doi.org/10.1038/nbt.3976
- Lynd LR, Liang X, Biddy MJ, Allee A, Cai H, Foust T, et al. 2017. Cellulosic ethanol: status and innovation. Curr. Opin. Biotechnol. 45: 202-211. https://doi.org/10.1016/j.copbio.2017.03.008
- Jin YS, Cate JH. 2017. Metabolic engineering of yeast for lignocellulosic biofuel production. Curr. Opin. Chem. Biol. 41: 99-106. https://doi.org/10.1016/j.cbpa.2017.10.025
- Turner TL, Kim H, Kong II, Liu JJ, Zhang GC, Jin YS. 2016. Engineering and evolution of Saccharomyces cerevisiae to produce biofuels and chemicals. Adv. Biochem. Eng. Biotechnol. 162:175-215.
- Kim SR, Park YC, Jin YS, Seo JH. 2013. Strain engineering of Saccharomyces cerevisiae for enhanced xylose metabolism. Biotechnol. Adv. 31: 851-861. https://doi.org/10.1016/j.biotechadv.2013.03.004
- Farwick A, Bruder S, Schadeweg V, Oreb M, Boles E. 2014. Engineering of yeast hexose transporters to transport D-xylose without inhibition by D-glucose. Proc. Natl. Acad. Sci. USA 111: 5159-5164. https://doi.org/10.1073/pnas.1323464111
- Gancedo JM. 1998. Yeast carbon catabolite repression. Microbiol. Mol. Biol. Rev. 62: 334-361. https://doi.org/10.1128/MMBR.62.2.334-361.1998
- Hou J, Qiu C, Shen Y, Li H, Bao X. 2017. Engineering of Saccharomyces cerevisiae for the efficient co-utilization of glucose and xylose. FEMS. Yeast. Res. 17: 1-11.
- Subtil T, Boles E. 2012. Competition between pentoses and glucose during uptake and catabolism in recombinant Saccharomyces cerevisiae. Biotechnol. Biofuels 5: 1-12. https://doi.org/10.1186/1754-6834-5-1
- Galazka JM, Tian C, Beeson WT, Martinez B, Glass NL, Cate JH. 2010. Cellodextrin transport in yeast for improved biofuel production. Science 330: 84-86. https://doi.org/10.1126/science.1192838
- Ha SJ, Galazka JM, Kim SR, Choi JH, Yang X, Seo JH, et al. 2011. Engineered Saccharomyces cerevisiae capable of simultaneous cellobiose and xylose fermentation. Proc. Natl. Acad. Sci. USA 108: 504-509. https://doi.org/10.1073/pnas.1010456108
- Kim SR, Ha SJ, Wei N, Oh EJ, Jin YS. 2012. Simultaneous co-fermentation of mixed sugars: a promising strategy for producing cellulosic ethanol. Trends Biotechnol. 30: 274-282. https://doi.org/10.1016/j.tibtech.2012.01.005
- Lee WH, Jin YS. 2017. Improved ethanol production by engineered Saccharomyces cerevisiae expressing a mutated cellobiose transporter during simultaneous saccharification and fermentation. J. Biotechnol. 245: 1-8. https://doi.org/10.1016/j.jbiotec.2017.01.018
- Lee WH, Nan H, Kim HJ, Jin YS. 2013. Simultaneous saccharification and fermentation by engineered Saccharomyces cerevisiae without supplementing extracellular β-glucosidase. J. Biotechnol. 167: 316-322. https://doi.org/10.1016/j.jbiotec.2013.06.016
- Bae YH, Kang KH, Jin YS, Seo JH. 2014. Molecular cloning and expression of fungal cellobiose transporters and β-glucosidases conferring efficient cellobiose fermentation in Saccharomyces cerevisiae. J. Biotechnol. 169: 34-41. https://doi.org/10.1016/j.jbiotec.2013.10.030
- Kim H, Lee WH, Galazka JM, Cate JH, Jin YS. 2014. Analysis of cellodextrin transporters from Neurospora crassa in Saccharomyces cerevisiae for cellobiose fermentation. Appl. Microbiol. Biotechnol. 98: 1087-1094. https://doi.org/10.1007/s00253-013-5339-2
- Kim HJ, Lee WH, Turner TL, Kwak S, Jin YS. 2019. An extra copy of the β-glucosidase gene improved the cellobiose fermentation capability of an engineered Saccharomyces cerevisiae strain. 3 Biotech. 9: 1-10. https://doi.org/10.1007/s13205-018-1515-5
- Bohlin C, Praestgaard E, Baumann MJ, Borch K, Praestgaard J, Monrad RN, et al. 2013. A comparative study of hydrolysis and transglycosylation activities of fungal β-glucosidases. Appl. Microbiol. Biotechnol. 97: 159-169. https://doi.org/10.1007/s00253-012-3875-9
- Teugjas H, Valjamae P. 2013. Selecting β-glucosidases to support cellulases in cellulose saccharification. Biotechnol. Biofuels 6: 1-13. https://doi.org/10.1186/1754-6834-6-1
- Zhao J, Shi D, Yang S, Lin H, Chen H. 2020. Identification of an intracellular β-glucosidase in Aspergillus niger with transglycosylation activity. Appl. Microbiol. Biotechnol. 104: 8367-8380. https://doi.org/10.1007/s00253-020-10840-4
- Njokweni AP, Rose SH, van Zyl WH. 2012. Fungal β-glucosidase expression in Saccharomyces cerevisiae. J. Ind. Microbiol. Biotechnol. 39: 1445-1452. https://doi.org/10.1007/s10295-012-1150-9
- Lagunas R. 1993. Sugar transport in Saccharomyces cerevisiae. FEMS. Microbiol. Rev. 10: 229-242. https://doi.org/10.1111/j.1574-6968.1993.tb05869.x
- Malhotra V. 2013. Unconventional protein secretion: an evolving mechanism. EMBO. J. 32: 1660-1664. https://doi.org/10.1038/emboj.2013.104
- Miura N, Ueda M. 2018. Evaluation of unconventional protein secretion by Saccharomyces cerevisiae and other fungi. Cells 7: 128. https://doi.org/10.3390/cells7090128
- Nombela C, Gil C, Chaffin WL. 2006. Non-conventional protein secretion in yeast. Trends. Microbiol. 14: 15-21. https://doi.org/10.1016/j.tim.2005.11.009
- Delic M, Valli M, Graf AB, Pfeffer M, Mattanovich D, Gasser B. 2013. The secretory pathway: exploring yeast diversity. FEMS. Microbiol. Rev. 37: 872-914.
- Miura N, Kirino A, Endo S, Morisaka H, Kuroda K, Takagi M, Ueda M. 2012. Tracing putative trafficking of the glycolytic enzyme enolase via SNARE-driven unconventional secretion. Eukaryot. Cell 11: 1075-1082. https://doi.org/10.1128/EC.00075-12
- Duran JM, Anjard C, Stefan C, Loomis WF, Malhotra V. 2010. Unconventional secretion of Acb1 is mediated by autophagosomes. J. Cell. Biol. 188: 527-536. https://doi.org/10.1083/jcb.200911154
- Jeffries TW, Van Vleet JR. 2009. Pichia stipitis genomics, transcriptomics, and gene clusters. FEMS Yeast Res. 9: 793-807. https://doi.org/10.1111/j.1567-1364.2009.00525.x