DOI QR코드

DOI QR Code

Developing a Virus-Binding Bacterium Expressing Mx Protein on the Bacterial Surface to Prevent Grouper Nervous Necrosis Virus Infection

  • Lin, Chia-Hua (Aquatic Science and Technology in Industry, College of Hydrosphere Science, National Kaohsiung University of Science and Technology) ;
  • Chen, Jun-Jie (Department and Graduate Institute of Aquaculture, National Kaohsiung University of Science and Technology) ;
  • Cheng, Chiu-Min (Department and Graduate Institute of Aquaculture, National Kaohsiung University of Science and Technology)
  • Received : 2021.03.19
  • Accepted : 2021.06.10
  • Published : 2021.08.28

Abstract

Grouper nervous necrosis virus (GNNV) infection causes mass grouper mortality, leading to substantial economic loss in Taiwan. Traditional methods of controlling GNNV infections involve the challenge of controlling disinfectant doses; low doses are ineffective, whereas high doses may cause environmental damage. Identifying potential methods to safely control GNNV infection to prevent viral outbreaks is essential. We engineered a virus-binding bacterium expressing a myxovirus resistance (Mx) protein on its surface for GNNV removal from phosphate-buffered saline (PBS), thus increasing the survival of grouper fin (GF-1) cells. We fused the grouper Mx protein (which recognizes and binds to the coat protein of GNNV) to the C-terminus of outer membrane lipoprotein A (lpp-Mx) and to the N-terminus of a bacterial autotransporter adhesin (Mx-AIDA); these constructs were expressed on the surfaces of Escherichia coli BL21 (BL21/lpp-Mx and BL21/Mx-AIDA). We examined bacterial surface expression capacity and GNNV binding activity through enzyme-linked immunosorbent assay; we also evaluated the GNNV removal efficacy of the bacteria and viral cytotoxicity after bacterial adsorption treatment. Although both constructs were successfully expressed, only BL21/lpp-Mx exhibited GNNV binding activity; BL21/lpp-Mx cells removed GNNV and protected GF-1 cells from GNNV infection more efficiently. Moreover, salinity affected the GNNV removal efficacy of BL21/lpp-Mx. Thus, our GNNV-binding bacterium is an efficient microparticle for removing GNNV from 10‰ brackish water and for preventing GNNV infection in groupers.

Keywords

Acknowledgement

The study was supported by a grant from the Ministry of Science and Technology in Taiwan (#MOST 108-2635-B-992-001), the National Science Council of the Executive Yuan in Taiwan (#NSC 103-2313-B-022-002).

References

  1. Rahmadia P, Kimb YR. 2014. Effects of different levels of ozone on ammonia, nitrite, nitrate, and dissolved organic carbon in sterilization of seawater. Desalin. Water Treat. 52: 4413-4422. https://doi.org/10.1080/19443994.2013.803702
  2. Nguyen HD, Mushiake K, Nakai T, Muroga K. 1997. Tissue distribution of striped jack nervous necrosis virus (SJNNV) in adult striped jack. Dis. Aquat. Organ. 28: 87-91. https://doi.org/10.3354/dao028087
  3. Peducasse S, Castric J, Thiery R, Jeffroy J, Le Ven A, Baudin Laurencin F. 1999. Comparative study of viral encephalopathy and retinopathy in juvenile sea bass Dicentrarchus labrax infected in different ways. Dis. Aquat. Organ. 36: 11-20. https://doi.org/10.3354/dao036011
  4. Watanabe KI, Nishizawa T, Yoshimizu M. 2000. Selection of brood stock candidates of barfin flounder using an ELISA system with recombinant protein of barfin flounder nervous necrosis virus. Dis. Aquat. Organ. 41: 219-223. https://doi.org/10.3354/dao041219
  5. Breuil G PJ, Castric J, Fauvel C, Thiery R. 2000. Isolation of viral haemorrhagic septicaemia virus (VHSV) from wild Japanese flounder, Paralichthys olivaceus. Bull. Eur. Ass. Fish Pathol. 20: 95-100.
  6. Chen W, Zhang H, Gu L F, Li, Yang F. 2012. Effects of high salinity, high temperature and pH on capsid structure of white spot syndrome virus. Dis. Aquat. Organ. 101: 167-171. https://doi.org/10.3354/dao02511
  7. Mushiake K NT, Nakai T, Furusawa I, Muroga K. 1994. Control of VNN in striped jack: Selection of spawners based on the detection of SJNNV gene by polymerase chain reaction (PCR). Fish Pathol. 29: 177-182. https://doi.org/10.3147/jsfp.29.177
  8. Misao Arimoto JS, Keigo Maruyama, Gen Mimura , Iwao Furusawa. 1996. Effect of chemical and physical treatments on the inactivation of striped jack nervous necrosis virus (SJNNV). Aquaculture 143: 15-22. https://doi.org/10.1016/0044-8486(96)01261-6
  9. Grotmol S, Totland GK. 2000. Surface disinfection of Atlantic halibut Hippoglossus hippoglossus eggs with ozonated sea-water inactivates nodavirus and increases survival of the larvae. Dis. Aquat. Organ. 39: 89-96. https://doi.org/10.3354/dao039089
  10. Alex Augusto GonAalves aGAG. 2011. Ozone application in recirculating aquaculture system: An overview. Ozone: Sci. Eng. 33: 345-367. https://doi.org/10.1080/01919512.2011.604595
  11. Hoffmann M, Kleine-Weber H, Schroeder S, Kruger N, Herrler T, Erichsen S, et al. 2020. SARS-CoV-2 Cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 181: 271-280.e8. https://doi.org/10.1016/j.cell.2020.02.052
  12. Lin LT, Richardson CD. 2016. The host cell receptors for measles virus and their interaction with the viral Hemagglutinin (H) protein. LID - 250. Viruses 8: 250. https://doi.org/10.3390/v8090250
  13. Jiang S, Hillyer C, Du L. 2020. Neutralizing antibodies against SARS-CoV-2 and other human coronaviruses. Trends Immunol. 41: 355-359. https://doi.org/10.1016/j.it.2020.03.007
  14. Myint O, Yoshida A, Sekiguchi S, Van Diep N, Fuke N, Izzati UZ, et al. 2019. Development of indirect enzyme-linked immunosorbent assay for detection of porcine epidemic diarrhea virus specific antibodies (IgG) in serum of naturally infected pigs. BMC Vet. Res. 15: 409. https://doi.org/10.1186/s12917-019-2123-2
  15. Morimoto K, Sato Y. 2016. Anti-influenza virus activity of high-mannose binding lectins derived from genus Pseudomonas. Virus Res. 223: 64-72. https://doi.org/10.1016/j.virusres.2016.06.020
  16. Lin YC, Tayag Cm, Huang Cl, Tsui Wc, Chen JC. 2010. White shrimp Litopenaeus vannamei that had received the hot-water extract of Spirulina platensis showed earlier recovery in immunity and up-regulation of gene expressions after pH stress. Fish Shellfish Immunol. 29: 1092-1098. https://doi.org/10.1016/j.fsi.2010.09.002
  17. Chieux V, Hober D, Harvey J, Lion G, Lucidarme D, Forzy G, et al. 1998. The MxA protein levels in whole blood lysates of patients with various viral infections. J. Virol. Methods 70: 183-191. https://doi.org/10.1016/S0166-0934(97)00177-8
  18. Trobridge GD, Chiou pp, Leong JA. 1997. Cloning of the rainbow trout (Oncorhynchus mykiss) Mx2 and Mx3 cDNAs and characterization of trout Mx protein expression in salmon cells. J. Virol. 71: 5304-5311. https://doi.org/10.1128/jvi.71.7.5304-5311.1997
  19. Chen YM, Su YL, Shie PS, Huang SL, Yang HL, Chen TY. 2008. Grouper Mx confers resistance to nodavirus and interacts with coat protein. Dev. Comp. Immunol. 32: 825-836. https://doi.org/10.1016/j.dci.2007.12.003
  20. Schorr J, Knapp B Hundt E, Kupper HA. 1991. Surface expression of malarial antigens in Salmonella typhimurium: induction of serum antibody response upon oral vaccination of mice. Vaccine 9: 675-681. https://doi.org/10.1016/0264-410X(91)90194-B
  21. Ribeiro LA, Azevedo V Oliveira SC, Dieye Y, Piard Jc Gruss A, et al. 2002. Production and targeting of the Brucella abortus antigen L7/L12 in Lactococcus lactis: a first step towards food-grade live vaccines against brucellosis. Appl. Environ. Microbiol. 68: 910-916. https://doi.org/10.1128/AEM.68.2.910-916.2002
  22. Gunneriusson E, Samuelson P, Uhlen M Nygren PA, Stahl S. 1996. Surface display of a functional single-chain Fv antibody on Staphylococci. J. Bacteriol. 178: 1341-1346. https://doi.org/10.1128/jb.178.5.1341-1346.1996
  23. Gunneriusson E, Samuelson P Ringdahl J, Gronlund H, Nygren PA, Stahl S, Stahl S. 1999. Staphylococcal surface display of immunoglobulin A (IgA)- and IgE-specific in vitro-selected binding proteins (affibodies) based on Staphylococcus aureus protein A. Appl. Environ. Microbiol. 65: 4134-4140. https://doi.org/10.1128/AEM.65.9.4134-4140.1999
  24. Wang AA, Mulchandani A, Chen W. 2002. Specific adhesion to cellulose and hydrolysis of organophosphate nerve agents by a genetically engineered Escherichia coli strain with a surface-expressed cellulose-binding domain and organophosphorus hydrolase. Appl. Environ. Microbiol. 68: 1684-1689. https://doi.org/10.1128/AEM.68.4.1684-1689.2002
  25. Strauss A, Gotz F. 1996. In vivo immobilization of enzymatically active polypeptides on the cell surface of Staphylococcus carnosus. Mol. Microbiol. 21: 491-500. https://doi.org/10.1111/j.1365-2958.1996.tb02558.x
  26. S C Chi WWHaBJL. 1999. Establishment and characterization of a continuous cell line(GF-1) derived from grouper, Epinephelus coioides (Hamil-ton): a cell line susceptible to grouper nervous necrosisvirus (GNNV). J. Fish Dis. 22: 173-182. https://doi.org/10.1046/j.1365-2761.1999.00152.x
  27. Cheng CM, Chen Fm Lu YL, Tzou SC, Wang JY, Kao CH, Liao KW, et al. 2013. Expression of β-glucuronidase on the surface of bacteria enhances activation of glucuronide prodrugs. Cancer Gene Ther. 20: 276-281. https://doi.org/10.1038/cgt.2013.17
  28. Cheng CM, Tzou SC, Zhuang YH, Huang CC, Kao CH, Liao KW, et al. 2014. Functional production of a soluble and secreted singlechain antibody by a bacterial secretion system. PLoS One 9: e97367. https://doi.org/10.1371/journal.pone.0097367
  29. L.J. Reed HM. 1938. A simple method of estimating fifty percent endpoints. Am. J. Epidemiol. 27: 493-497. https://doi.org/10.1093/oxfordjournals.aje.a118408
  30. Shieh JR, Chi SC. 2005. Production of monoclonal antibodies against grouper nervous necrosis virus (GNNV) and development of an antigen capture ELISA. Dis. Aquat. Organ. 63: 53-60. https://doi.org/10.3354/dao063053
  31. Chard T. 1987. Laboratory techniques in biochemistry and molecular biology: an introduction to radioimmunoassay and related techniques. pp. 4-15. 4th ed. Elsevier. Science. Pub. Co., New York, NY, USA.
  32. Bergan V, Robertsen B. 2004. Characterization of Atlantic halibut (Hippoglossus hippoglossus) Mx protein expression. Dev. Comp. Immunol. 28: 1037-1047. https://doi.org/10.1016/j.dci.2004.03.003
  33. Trobridge GD, Chiou Pp, Leong JA. 1997. Cloning of the rainbow trout (Oncorhynchus mykiss) Mx2 and Mx3 cDNAs and characterization of trout Mx protein expression in salmon cells. J. Virol. 71: 5304. https://doi.org/10.1128/jvi.71.7.5304-5311.1997
  34. Liu Y, Li Y, Zhou Y, Jiang N, Fan Y, Zeng L. 2020. Characterization, expression pattern and antiviral activities of Mx gene in Chinese giant Salamander, Andrias davidianus. Int. J. Mol. Sci. 21: 2246. https://doi.org/10.3390/ijms21062246
  35. Caipang CM, Hirono I, Aoki T. 2003. In vitro inhibition of fish rhabdoviruses by Japanese flounder, Paralichthys olivaceus Mx. Virology 317: 373-382. https://doi.org/10.1016/j.virol.2003.08.040
  36. Gordien E, Rosmorduc O Peltekian C, Garreau F, Brechot C, Kremsdorf D. 2001. Inhibition of hepatitis B virus replication by the interferon-inducible MxA protein. J. Virol. 75: 2684-2691. https://doi.org/10.1128/JVI.75.6.2684-2691.2001
  37. Lin CH, Christopher John JA, Chang CY. 2006. Inhibition of nervous necrosis virus propagation by fish Mx proteins. Biochem. Biophys. Res. Commun. 351: 534-539. https://doi.org/10.1016/j.bbrc.2006.10.063
  38. Haller O, Kochs G. 2010. Human MxA protein: an interferon-induced dynamin-like GTPase with broad antiviral activity. J. Interferon Cytokine Res. 31: 79. https://doi.org/10.1089/jir.2010.0076
  39. Chen YM, Su Yl Shie P-S, Huang S-L, Yang H-L, Chen TY. 2008. Grouper Mx confers resistance to nodavirus and interacts with coat protein. Dev. Comp. Immunol. 32: 825. https://doi.org/10.1016/j.dci.2007.12.003
  40. Richins RD, Kaneva I Mulchandani A, Chen W. 1997. Biodegradation of organophosphorus pesticides by surface-expressed organophosphorus hydrolase. Nat. Biotechnol. 15: 984-987. https://doi.org/10.1038/nbt1097-984
  41. Chen T, Wang K, Chi X, Zhou L, Li J, Liu L, et al. 2019. Construction of a bacterial surface display system based on outer membrane protein F. Microb. Cell Fact. 18: 70. https://doi.org/10.1186/s12934-019-1120-2
  42. Lee JS, Shin Ks Fau - Pan JG, Pan Jg Fau - Kim CJ, Kim CJ. 2000. Surface-displayed viral antigens on Salmonella carrier vaccine. Nat. Biotechnol. 18: 645-648. https://doi.org/10.1038/76494
  43. Wong RS, Wirtz Ra Fau - Hancock RE, Hancock RE. 1995. Pseudomonas aeruginosa outer membrane protein OprF as an expression vector for foreign epitopes: the effects of positioning and length on the antigenicity of the epitope. Gene 158: 55. https://doi.org/10.1016/0378-1119(95)00155-Y
  44. Georgiou G, Stephens DL, Stathopoulos C, Poetschke HL, Mendenhall J, Earhart CF. 1996. Display of beta-lactamase on the Escherichia coli surface: outer membrane phenotypes conferred by Lpp'-OmpA'-beta-lactamase fusions. Protein Eng. 9: 239-247. https://doi.org/10.1093/protein/9.2.239
  45. Daugherty PS, Olsen Mj Iverson BL, Georgiou G. 1999. Development of an optimized expression system for the screening of antibody libraries displayed on the Escherichia coli surface. Protein Eng. 12: 613. https://doi.org/10.1093/protein/12.7.613
  46. Isoda R, Simanski SP, Pathangey L, Stone AE, Brown TA. 2007. Expression of a Porphyromonas gingivalis hemagglutinin on the surface of a Salmonella vaccine vector. Vaccine 25: 117-126. https://doi.org/10.1016/j.vaccine.2006.06.085
  47. Yang C, Zhao Q, Liu Z, Li Q, Qiao C, Mulchandani A, et al. 2008. Cell surface display of functional macromolecule fusions on Escherichia coli for development of an autofluorescent whole-cell biocatalyst. Environ. Sci. Technol. 42: 6105-6110. https://doi.org/10.1021/es800441t
  48. Mogensen JE, Tapadar D, Schmidt MA, Otzen DE. 2005. Barriers to folding of the transmembrane domain of the Escherichia coli autotransporter adhesin involved in diffuse adherence. Biochemistry 44: 4533-4545. https://doi.org/10.1021/bi0475121
  49. Konieczny MPJ, Benz I, Hollinderbaumer B, Beinke C, Niederweis M, Schmidt MA. 2001. Modular organization of the AIDA autotransporter translocator: the N-terminal beta1-domain is surface-exposed and stabilizes the transmembrane beta2-domain. Antonie Van Leeuwenhoek 80: 19-34. https://doi.org/10.1023/A:1012084325728
  50. Strauss A, Gotz F. 1996. In vivo immobilization of enzymatically active polypeptides on the cell surface of Staphylococcus carnosus. Mol. Microbiol. 21: 491. https://doi.org/10.1111/j.1365-2958.1996.tb02558.x
  51. Hao WR, Chen M, Chen YJ, Su YC, Cheng CM, Hsueh HY, et al. 2017. Poly-protein G-expressing bacteria enhance the sensitivity of immunoassays. Sci. Rep. 7: 989. https://doi.org/10.1038/s41598-017-01022-w
  52. Kumar S, Nussinov R. 1999. Salt bridge stability in monomeric proteins. J. Mol. Biol. 293: 1241. https://doi.org/10.1006/jmbi.1999.3218
  53. Chen TS, Wu YC, Chi SC. 2016. Decreasing salinity of seawater moderates immune response and increases survival rate of giant groupers post betanodavirus infection. Fish Shellfish Immunol. 57: 325. https://doi.org/10.1016/j.fsi.2016.08.050