• Title/Summary/Keyword: grouper Mx protein

Search Result 2, Processing Time 0.016 seconds

Developing a Virus-Binding Bacterium Expressing Mx Protein on the Bacterial Surface to Prevent Grouper Nervous Necrosis Virus Infection

  • Lin, Chia-Hua;Chen, Jun-Jie;Cheng, Chiu-Min
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.8
    • /
    • pp.1088-1097
    • /
    • 2021
  • Grouper nervous necrosis virus (GNNV) infection causes mass grouper mortality, leading to substantial economic loss in Taiwan. Traditional methods of controlling GNNV infections involve the challenge of controlling disinfectant doses; low doses are ineffective, whereas high doses may cause environmental damage. Identifying potential methods to safely control GNNV infection to prevent viral outbreaks is essential. We engineered a virus-binding bacterium expressing a myxovirus resistance (Mx) protein on its surface for GNNV removal from phosphate-buffered saline (PBS), thus increasing the survival of grouper fin (GF-1) cells. We fused the grouper Mx protein (which recognizes and binds to the coat protein of GNNV) to the C-terminus of outer membrane lipoprotein A (lpp-Mx) and to the N-terminus of a bacterial autotransporter adhesin (Mx-AIDA); these constructs were expressed on the surfaces of Escherichia coli BL21 (BL21/lpp-Mx and BL21/Mx-AIDA). We examined bacterial surface expression capacity and GNNV binding activity through enzyme-linked immunosorbent assay; we also evaluated the GNNV removal efficacy of the bacteria and viral cytotoxicity after bacterial adsorption treatment. Although both constructs were successfully expressed, only BL21/lpp-Mx exhibited GNNV binding activity; BL21/lpp-Mx cells removed GNNV and protected GF-1 cells from GNNV infection more efficiently. Moreover, salinity affected the GNNV removal efficacy of BL21/lpp-Mx. Thus, our GNNV-binding bacterium is an efficient microparticle for removing GNNV from 10‰ brackish water and for preventing GNNV infection in groupers.

Validation of housekeeping genes as candidate internal references for quantitative expression studies in healthy and nervous necrosis virus-infected seven-band grouper (Hyporthodus septemfasciatus)

  • Krishnan, Rahul;Qadiri, Syed Shariq Nazir;Kim, Jong-Oh;Kim, Jae-Ok;Oh, Myung-Joo
    • Fisheries and Aquatic Sciences
    • /
    • v.22 no.12
    • /
    • pp.28.1-28.8
    • /
    • 2019
  • Background: In the present study, we evaluated four commonly used housekeeping genes, viz., actin-β, elongation factor-1α (EF1α), acidic ribosomal protein (ARP), and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) as internal references for quantitative analysis of immune genes in nervous necrosis virus (NNV)-infected seven-band grouper, Hyporthodus septemfasciatus. Methods: Expression profiles of the four genes were estimated in 12 tissues of healthy and infected seven-band grouper. Expression stability of the genes was calculated using the delta Ct method, BestKeeper, NormFinder, and geNorm algorithms. Consensus ranking was performed using RefFinder, and statistical analysis was done using GraphpadPrism 5.0. Results: Tissue-specific variations were observed in the four tested housekeeping genes of healthy and NNV-infected seven-band grouper. Fold change calculation for interferon-1 and Mx expression using the four housekeeping genes as internal references presented varied profiles for each tissue. EF1α and actin-β was the most stable expressed gene in tissues of healthy and NNV-infected seven-band grouper, respectively. Consensus ranking using RefFinder suggested EF1α as the least variable and highly stable gene in the healthy and infected animals. Conclusions: These results suggest that EF1α can be a fairly better internal reference in comparison to other tested genes in this study during the NNV infection process. This forms the pilot study on the validation of reference genes in Hyporthodus septemfasciatus, in the context of NNV infection.