Acknowledgement
The author would like to thank the reviewers for all useful and helpful comments on our manuscript.
References
- D. Andreucci, G. R. Cirmi, S. Leonardi, and A. F. Tedeev, Large time behavior of solutions to the Neumann problem for a quasilinear second order degenerate parabolic equation in domains with noncompact boundary, J. Differential Equations 174 (2001), no. 2, 253-288. https://doi.org/10.1006/jdeq.2000.3948
- S. N. Antontsev, J. I. Diaz, and S. Shmarev, Energy methods for free boundary problems, Progress in Nonlinear Differential Equations and their Applications, 48, Birkhauser Boston, Inc., Boston, MA, 2002. https://doi.org/10.1007/978-1-4612-0091-8
- S. N. Antontsev and S. I. Shmarev, A model porous medium equation with variable exponent of nonlinearity: existence, uniqueness and localization properties of solutions, Nonlinear Anal. 60 (2005), no. 3, 515-545. https://doi.org/10.1016/j.na.2004.09.026
- S. N. Antontsev and S. I. Shmarev, Elliptic equations and systems with nonstandard growth conditions: existence, uniqueness and localization properties of solutions, Nonlinear Anal. 65 (2006), no. 4, 728-761. https://doi.org/10.1016/j.na.2005.09.035
- M. Bendahmane, M. Langlais, and M. Saad, On some anisotropic reaction-diffusion systems with L1-data modeling the propagation of an epidemic disease, Nonlinear Anal. 54 (2003), no. 4, 617-636. https://doi.org/10.1016/S0362-546X(03)00090-7
- C. S. Chen and R. Y. Wang, Global existence of and L∞ estimates for solutions for a doubly degenerate parabolic equation, Acta Math. Sinica (Chin. Ser.) 44 (2001), no. 6, 1089-1098. https://doi.org/10.3321/j.issn:0583-1431.2001.06.015
- J. Droniou, R. Eymard, and K. S. Talbot, Convergence in C([0, T]; L2(Ω)) of weak solutions to perturbed doubly degenerate parabolic equations, J. Differential Equations 260 (2016), 7821-7860. https://doi.org/10.1016/j.jde.2016.02.004
- E. Eisenriegler, Anisotropic colloidal particles in critical fluids, J. Chem. Phys. 121 (2004), 32-99. https://doi.org/10.1063/1.1768514
- E. Eisenriegler, Anisotropic colloidal particles interacting with polymers in a good solvent, J. Chem. Phys. 124 (2006), 144-912. https://doi.org/10.1063/1.2185644
- A. El Hamidi and J.-M. Rakotoson, On a perturbed anisotropic equation with a critical exponent, Ric. Mat. 55 (2006), no. 1, 55-69. https://doi.org/10.1007/s11587-006-0004-z
- A. El Hamidi and J.-M. Rakotoson, Extremal functions for the anisotropic Sobolev inequalities, Ann. Inst. H. Poincare Anal. Non Lineaire 24 (2007), no. 5, 741-756. https://doi.org/10.1016/j.anihpc.2006.06.003
- H. J. Fan, Cauchy problem of some doubly degenerate parabolic equations with initial datum a measure, Acta Math. Sin. (Engl. Ser.) 20 (2004), no. 4, 663-682. https://doi.org/10.1007/s10114-004-0375-6
- I. Fragala, F. Gazzola, and B. Kawohl, Existence and nonexistence results for anisotropic quasilinear elliptic equations, Ann. Inst. H. Poincare Anal. Non Lineaire 21 (2004), no. 5, 715-734. https://doi.org/10.1016/j.anihpc.2003.12.001
- R. Gianni, A. Tedeev, and V. Vespri, Asymptotic expansion of solutions to the Cauchy problem for doubly degenerate parabolic equations with measurable coefficients, Nonlinear Anal. 138 (2016), 111-126. https://doi.org/10.1016/j.na.2015.09.006
- Q. Li, Weak Harnack estimates for supersolutions to doubly degenerate parabolic equations, Nonlinear Anal. 170 (2018), 88-122. https://doi.org/10.1016/j.na.2017.12.017
- M. Mihailescu, P. Pucci, and V. Radulescu, Nonhomogeneous boundary value problems in anisotropic Sobolev spaces, C. R. Math. Acad. Sci. Paris 345 (2007), no. 10, 561-566. https://doi.org/10.1016/j.crma.2007.10.012
- M. Mihailescu, P. Pucci, and V. Radulescu, Eigenvalue problems for anisotropic quasilinear elliptic equations with variable exponent, J. Math. Anal. Appl. 340 (2008), no. 1, 687-698. https://doi.org/10.1016/j.jmaa.2007.09.015
- F. Otto, L1-contraction and uniqueness for quasilinear elliptic-parabolic equations, J. Differential Equations 131 (1996), no. 1, 20-38. https://doi.org/10.1006/jdeq.1996.0155
- H. Shang and J. Cheng, Cauchy problem for doubly degenerate parabolic equation with gradient source, Nonlinear Anal. 113 (2015), 323-338. https://doi.org/10.1016/j.na.2014.10.006
- J. Sun, J. Yin, and Y. Wang, Asymptotic bounds of solutions for a periodic doubly degenerate parabolic equation, Nonlinear Anal. 74 (2011), no. 6, 2415-2424. https://doi.org/10.1016/j.na.2010.11.044
- A. F. Tedeev, The interface blow-up phenomenon and local estimates for doubly degenerate parabolic equations, Appl. Anal. 86 (2007), no. 6, 755-782. https://doi.org/10.1080/00036810701435711
- M. Tsutsumi, On solutions of some doubly nonlinear degenerate parabolic equations with absorption, J. Math. Anal. Appl. 132 (1988), no. 1, 187-212. https://doi.org/10.1016/0022-247X(88)90053-4
- J. Weickert, Anisotropic diffusion in image processing, European Consortium for Mathematics in Industry, B. G. Teubner, Stuttgart, 1998.
- Z. Wu, J. Zhao, J. Yin, and H. Li, Nonlinear Diffusion Equations, World Scientic Publishing, Singapore, 2001.
- H. J. Yuan, S. Z. Lian, C. L. Cao, W. J. Gao, and X. J. Xu, Extinction and positivity for a doubly nonlinear degenerate parabolic equation, Acta Math. Sin. (Engl. Ser.) 23 (2007), no. 10, 1751-1756. https://doi.org/10.1007/s10114-007-0944-6
- H. Zhan, Solutions to polytropic filtration equations with a convection term, Electron. J. Differential Equations 2017 (2017), Paper No. 207, 10 pp.
- H. Zhan, The weak solutions of an evolutionary p(x)-Laplacian equation are controlled by the initial value, Comput. Math. Appl. 76 (2018), no. 9, 2272-2285. https://doi.org/10.1016/j.camwa.2018.08.026
- H. Zhan, Infiltration equation with degeneracy on the boundary, Acta Appl. Math. 153 (2018), 147-161. https://doi.org/10.1007/s10440-017-0124-3
- H. Zhan, The stability of the solutions of an anisotropic diffusion equation, Lett. Math. Phys. 109 (2019), no. 5, 1145-1166. https://doi.org/10.1007/s11005-018-1135-3
- H. Zhan, The nonnegative weak solution of a degenerate parabolic equation with variable exponent growth order, Bound. Value Probl. 2020 (2020), Paper No. 69, 20 pp. https://doi.org/10.1186/s13661-020-01364-x
- H. Zhan and Z. Feng, Well-posedness problem of an anisotropic parabolic equation, J. Differential Equations 268 (2020), no. 2, 389-413. https://doi.org/10.1016/j.jde.2019.08.014
- H. Zhan and Z. Feng, The stability theorems of non-Newtonian fluid and electrorheological fluid mixed type equation, preprint, 2020.
- H. Zhan and Z. Feng, The definite condition for the evolutionary p(x)-Laplacian equation, preprint, 2020.
- J. N. Zhao and H. J. Yuan, The Cauchy problem for a class of nonlinear doubly degenerate parabolic equations, Chinese Ann. Math. Ser. A 16 (1995), no. 2, 181-196.
- V. V. Zhikov, On the density of smooth functions in Sobolev-Orlicz spaces, J. Math. Sci. (N.Y.) 132 (2006), no. 3, 285-294; translated from Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 310 (2004), Kraev. Zadachi Mat. Fiz. i Smezh. Vopr. Teor. Funkts. 35 [34], 67-81, 226. https://doi.org/10.1007/s10958-005-0497-0
- Z. Zhou, Z. Guo, and B. Wu, A doubly degenerate diffusion equation in multiplicative noise removal models, J. Math. Anal. Appl. 458 (2018), no. 1, 58-70. https://doi.org/10.1016/j.jmaa.2017.08.049
- W. Zou and J. Li, Existence and uniqueness of solutions for a class of doubly degenerate parabolic equations, J. Math. Anal. Appl. 446 (2017), no. 2, 1833-1862. https://doi.org/10.1016/j.jmaa.2016.10.002