DOI QR코드

DOI QR Code

THE STABILITY OF WEAK SOLUTIONS TO AN ANISOTROPIC POLYTROPIC INFILTRATION EQUATION

  • Zhan, Huashui (School of Applied Mathematics Xiamen University of Technology)
  • Received : 2020.06.30
  • Accepted : 2020.12.23
  • Published : 2021.09.01

Abstract

This paper considers an anisotropic polytropic infiltration equation with a source term $$u_t={\sum\limits_{i=1}^{N}}{\frac{{\partial}}{{\partial}x_i}}\(a_1(x){\mid}u{\mid}^{{\alpha}_i}{\mid}u_{x_i}{\mid}^{p_i-2}u_{x_i}\)+f(x,t,u)$$, where pi > 1, αi > 0, ai(x) ≥ 0. The existence of weak solution is proved by parabolically regularized method. Based on local integrability $u_{x_i}{\in}W_{loc}^{1,p_i}(\Omega)$, the stability of weak solutions is proved without boundary value condition by the weak characteristic function method. One of the essential characteristics of an anisotropic equation different from an isotropic equation is found originally.

Keywords

Acknowledgement

The author would like to thank the reviewers for all useful and helpful comments on our manuscript.

References

  1. D. Andreucci, G. R. Cirmi, S. Leonardi, and A. F. Tedeev, Large time behavior of solutions to the Neumann problem for a quasilinear second order degenerate parabolic equation in domains with noncompact boundary, J. Differential Equations 174 (2001), no. 2, 253-288. https://doi.org/10.1006/jdeq.2000.3948
  2. S. N. Antontsev, J. I. Diaz, and S. Shmarev, Energy methods for free boundary problems, Progress in Nonlinear Differential Equations and their Applications, 48, Birkhauser Boston, Inc., Boston, MA, 2002. https://doi.org/10.1007/978-1-4612-0091-8
  3. S. N. Antontsev and S. I. Shmarev, A model porous medium equation with variable exponent of nonlinearity: existence, uniqueness and localization properties of solutions, Nonlinear Anal. 60 (2005), no. 3, 515-545. https://doi.org/10.1016/j.na.2004.09.026
  4. S. N. Antontsev and S. I. Shmarev, Elliptic equations and systems with nonstandard growth conditions: existence, uniqueness and localization properties of solutions, Nonlinear Anal. 65 (2006), no. 4, 728-761. https://doi.org/10.1016/j.na.2005.09.035
  5. M. Bendahmane, M. Langlais, and M. Saad, On some anisotropic reaction-diffusion systems with L1-data modeling the propagation of an epidemic disease, Nonlinear Anal. 54 (2003), no. 4, 617-636. https://doi.org/10.1016/S0362-546X(03)00090-7
  6. C. S. Chen and R. Y. Wang, Global existence of and L estimates for solutions for a doubly degenerate parabolic equation, Acta Math. Sinica (Chin. Ser.) 44 (2001), no. 6, 1089-1098. https://doi.org/10.3321/j.issn:0583-1431.2001.06.015
  7. J. Droniou, R. Eymard, and K. S. Talbot, Convergence in C([0, T]; L2(Ω)) of weak solutions to perturbed doubly degenerate parabolic equations, J. Differential Equations 260 (2016), 7821-7860. https://doi.org/10.1016/j.jde.2016.02.004
  8. E. Eisenriegler, Anisotropic colloidal particles in critical fluids, J. Chem. Phys. 121 (2004), 32-99. https://doi.org/10.1063/1.1768514
  9. E. Eisenriegler, Anisotropic colloidal particles interacting with polymers in a good solvent, J. Chem. Phys. 124 (2006), 144-912. https://doi.org/10.1063/1.2185644
  10. A. El Hamidi and J.-M. Rakotoson, On a perturbed anisotropic equation with a critical exponent, Ric. Mat. 55 (2006), no. 1, 55-69. https://doi.org/10.1007/s11587-006-0004-z
  11. A. El Hamidi and J.-M. Rakotoson, Extremal functions for the anisotropic Sobolev inequalities, Ann. Inst. H. Poincare Anal. Non Lineaire 24 (2007), no. 5, 741-756. https://doi.org/10.1016/j.anihpc.2006.06.003
  12. H. J. Fan, Cauchy problem of some doubly degenerate parabolic equations with initial datum a measure, Acta Math. Sin. (Engl. Ser.) 20 (2004), no. 4, 663-682. https://doi.org/10.1007/s10114-004-0375-6
  13. I. Fragala, F. Gazzola, and B. Kawohl, Existence and nonexistence results for anisotropic quasilinear elliptic equations, Ann. Inst. H. Poincare Anal. Non Lineaire 21 (2004), no. 5, 715-734. https://doi.org/10.1016/j.anihpc.2003.12.001
  14. R. Gianni, A. Tedeev, and V. Vespri, Asymptotic expansion of solutions to the Cauchy problem for doubly degenerate parabolic equations with measurable coefficients, Nonlinear Anal. 138 (2016), 111-126. https://doi.org/10.1016/j.na.2015.09.006
  15. Q. Li, Weak Harnack estimates for supersolutions to doubly degenerate parabolic equations, Nonlinear Anal. 170 (2018), 88-122. https://doi.org/10.1016/j.na.2017.12.017
  16. M. Mihailescu, P. Pucci, and V. Radulescu, Nonhomogeneous boundary value problems in anisotropic Sobolev spaces, C. R. Math. Acad. Sci. Paris 345 (2007), no. 10, 561-566. https://doi.org/10.1016/j.crma.2007.10.012
  17. M. Mihailescu, P. Pucci, and V. Radulescu, Eigenvalue problems for anisotropic quasilinear elliptic equations with variable exponent, J. Math. Anal. Appl. 340 (2008), no. 1, 687-698. https://doi.org/10.1016/j.jmaa.2007.09.015
  18. F. Otto, L1-contraction and uniqueness for quasilinear elliptic-parabolic equations, J. Differential Equations 131 (1996), no. 1, 20-38. https://doi.org/10.1006/jdeq.1996.0155
  19. H. Shang and J. Cheng, Cauchy problem for doubly degenerate parabolic equation with gradient source, Nonlinear Anal. 113 (2015), 323-338. https://doi.org/10.1016/j.na.2014.10.006
  20. J. Sun, J. Yin, and Y. Wang, Asymptotic bounds of solutions for a periodic doubly degenerate parabolic equation, Nonlinear Anal. 74 (2011), no. 6, 2415-2424. https://doi.org/10.1016/j.na.2010.11.044
  21. A. F. Tedeev, The interface blow-up phenomenon and local estimates for doubly degenerate parabolic equations, Appl. Anal. 86 (2007), no. 6, 755-782. https://doi.org/10.1080/00036810701435711
  22. M. Tsutsumi, On solutions of some doubly nonlinear degenerate parabolic equations with absorption, J. Math. Anal. Appl. 132 (1988), no. 1, 187-212. https://doi.org/10.1016/0022-247X(88)90053-4
  23. J. Weickert, Anisotropic diffusion in image processing, European Consortium for Mathematics in Industry, B. G. Teubner, Stuttgart, 1998.
  24. Z. Wu, J. Zhao, J. Yin, and H. Li, Nonlinear Diffusion Equations, World Scientic Publishing, Singapore, 2001.
  25. H. J. Yuan, S. Z. Lian, C. L. Cao, W. J. Gao, and X. J. Xu, Extinction and positivity for a doubly nonlinear degenerate parabolic equation, Acta Math. Sin. (Engl. Ser.) 23 (2007), no. 10, 1751-1756. https://doi.org/10.1007/s10114-007-0944-6
  26. H. Zhan, Solutions to polytropic filtration equations with a convection term, Electron. J. Differential Equations 2017 (2017), Paper No. 207, 10 pp.
  27. H. Zhan, The weak solutions of an evolutionary p(x)-Laplacian equation are controlled by the initial value, Comput. Math. Appl. 76 (2018), no. 9, 2272-2285. https://doi.org/10.1016/j.camwa.2018.08.026
  28. H. Zhan, Infiltration equation with degeneracy on the boundary, Acta Appl. Math. 153 (2018), 147-161. https://doi.org/10.1007/s10440-017-0124-3
  29. H. Zhan, The stability of the solutions of an anisotropic diffusion equation, Lett. Math. Phys. 109 (2019), no. 5, 1145-1166. https://doi.org/10.1007/s11005-018-1135-3
  30. H. Zhan, The nonnegative weak solution of a degenerate parabolic equation with variable exponent growth order, Bound. Value Probl. 2020 (2020), Paper No. 69, 20 pp. https://doi.org/10.1186/s13661-020-01364-x
  31. H. Zhan and Z. Feng, Well-posedness problem of an anisotropic parabolic equation, J. Differential Equations 268 (2020), no. 2, 389-413. https://doi.org/10.1016/j.jde.2019.08.014
  32. H. Zhan and Z. Feng, The stability theorems of non-Newtonian fluid and electrorheological fluid mixed type equation, preprint, 2020.
  33. H. Zhan and Z. Feng, The definite condition for the evolutionary p(x)-Laplacian equation, preprint, 2020.
  34. J. N. Zhao and H. J. Yuan, The Cauchy problem for a class of nonlinear doubly degenerate parabolic equations, Chinese Ann. Math. Ser. A 16 (1995), no. 2, 181-196.
  35. V. V. Zhikov, On the density of smooth functions in Sobolev-Orlicz spaces, J. Math. Sci. (N.Y.) 132 (2006), no. 3, 285-294; translated from Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 310 (2004), Kraev. Zadachi Mat. Fiz. i Smezh. Vopr. Teor. Funkts. 35 [34], 67-81, 226. https://doi.org/10.1007/s10958-005-0497-0
  36. Z. Zhou, Z. Guo, and B. Wu, A doubly degenerate diffusion equation in multiplicative noise removal models, J. Math. Anal. Appl. 458 (2018), no. 1, 58-70. https://doi.org/10.1016/j.jmaa.2017.08.049
  37. W. Zou and J. Li, Existence and uniqueness of solutions for a class of doubly degenerate parabolic equations, J. Math. Anal. Appl. 446 (2017), no. 2, 1833-1862. https://doi.org/10.1016/j.jmaa.2016.10.002