DOI QR코드

DOI QR Code

High-power Yb Fiber Laser with 3.0-kW Output

3.0 kW 고출력 발진 단일 모드 Yb 광섬유 레이저

  • Park, Jong Seon (Department of Photonics and Nanoelectronics, University of Hanyang ERICA) ;
  • Park, Eun Ji (Department of Applied Physics, University of Hanyang ERICA) ;
  • Oh, Ye Jin (Department of Photonics and Nanoelectronics, University of Hanyang ERICA) ;
  • Jeong, Hoon (Manufacturing System R&D Department, Korea Institute of Industrial Technology) ;
  • Kim, Ji Won (Department of Photonics and Nanoelectronics, University of Hanyang ERICA) ;
  • Jung, Yeji (Laser and Sensor Systems Team, Defense R&D Center, Hanwha Co.) ;
  • Lee, Kangin (Laser and Sensor Systems Team, Defense R&D Center, Hanwha Co.) ;
  • Lee, Yongsoo (Laser and Sensor Systems Team, Defense R&D Center, Hanwha Co.) ;
  • Cho, Joonyong (Laser and Sensor Systems Team, Defense R&D Center, Hanwha Co.)
  • 박종선 (한양대학교 에리카 나노광전자학과) ;
  • 박은지 (한양대학교 ERICA 응용물리학과) ;
  • 오예진 (한양대학교 에리카 나노광전자학과) ;
  • 정훈 (한국생산기술연구원 청정생산시스템연구소) ;
  • 김지원 (한양대학교 에리카 나노광전자학과) ;
  • 정예지 ((주)한화종합연구소 레이저센터) ;
  • 이강인 ((주)한화종합연구소 레이저센터) ;
  • 이용수 ((주)한화종합연구소 레이저센터) ;
  • 조준용 ((주)한화종합연구소 레이저센터)
  • Received : 2021.05.27
  • Accepted : 2021.06.26
  • Published : 2021.08.25

Abstract

We report high-power continuous-wave operation of a Yb-doped fiber laser at 1070 nm, pumped by high-power laser diodes at 976 nm. Based on theoretical calculation of the stimulated Raman scattering and temperature distribution in the fiber, we construct a bidirectionally pumped Yb-fiberlaser system incorporating a pair of fiber Bragg gratings and a cladding light stripper. The fiber laser yields 3.0 kW of continuous-wave output at 1070 nm in a diffraction-limited beam with M2 ≈ 1.26 for 4.1 kW of incident pump power, corresponding to a slope efficiency of 81.5%. The prospects for further power scaling are discussed.

본 논문에서는 최고 출력 3.0 kW 발진 단일 모드 이터븀(ytterbium, Yb) 첨가 광섬유 레이저에 대해 보고한다. 고출력 광섬유 레이저의 출력을 제한하는 주된 요소인 유도 라만 산란 문턱 값과 광섬유 내 온도 분포를 계산하고 이를 바탕으로 양방향 펌핑 구조의 단일 공진기 Yb 광섬유 레이저 시스템을 제작하였다. 그 결과 4.1 kW의 펌프 출력에서 최고 출력 3.0 kW의 레이저 빔을 얻을 수 있었고, 그때의 기울기 효율은 81.5%로 계산되었다. 최고 출력에서 측정된 출력 빔의 빔질(M2)은 1.26으로 단일 공간 모드 빔 출력 특성을 가지고 있음을 확인하였고, 유도 라만 산란 및 횡모드 불안정 현상은 관측되지 않았다. 본 연구에서 얻은 광섬유 레이저 출력 결과는 지금까지 국내에서 보고된 다이오드 레이저로 펌핑한 광섬유 레이저 출력 중 가장 높은 출력이며, 향후 더 높은 출력을 얻기 위한 방법에 대해 논의하고자 한다.

Keywords

References

  1. Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson, "Ytterbium doped large-core fiber laser with 1.36 kW continuous-wave output power," Opt. Express 12, 6088-6092 (2004). https://doi.org/10.1364/OPEX.12.006088
  2. S. Son, H. Park, and K. H. Lee, "Automated laser scanning system for reverse engineering and inspection," Int. J. Mach. Tools Manuf. 42, 889-897 (2002). https://doi.org/10.1016/S0890-6955(02)00030-5
  3. C. Fang, J. Xin, W. Dai, J. Wei, J. Wu, and Y. Song, "Deep penetration laser welding of austenitic stainless steel thick-plates using a 20 kW fiber laser," J. Laser Appl. 32, 012009 (2020). https://doi.org/10.2351/1.5094176
  4. Y. Kawahito, H. Wang, S. Katayama, and D. Sumimori, "Ultra high power (100 kW) fiber laser welding of steel," Opt. Lett. 43, 4667-4670 (2018). https://doi.org/10.1364/OL.43.004667
  5. K. Ludewigt, A. Liem, U. Stuhr, and M. Jung, "High-power laser development for laser weapons," Proc. SPIE 11162, 116207 (2019).
  6. F. Moller, R. G. Kramer, C. Matzdorf, S. Nolte, M. Strecker, F. Stutzki, M. Plotner, V. Bock, T. Schreiber, and A. Tunnermann, "Comparison between bidirectional pumped Yb-doped all-fiber single-mode amplifier and oscillator setup up to a power level of 5 kW," in Advanced Solid State Lasers (Optical Society of America, 2018), paper AM2A.3.
  7. K. Shima, S. Ikoma, K. Uchiyama, Y. Takubo, M. Kashiwagi, and D. Tanaka, "5-kW single stage all-fiber Yb-doped singlemode fiber laser for materials processing," Proc. SPIE 10512, 105120C (2018).
  8. Y. Wang, R. Kitahara, W. Kiyoyama, Y. Shirakura, T. Kurihara, Y. Nakanish, T. Yamamoto, M. Nakayama, S. Ikoma, and K. Shima, "8-kW single-stage all-fiber Yb-doped fiber laser with a BPP of 0.50 mm-mrad," Proc. SPIE 11260, 1126022 (2020).
  9. E. Honea, R. S. Afzal, M. Savage-Leuchs, J. Henrie, K. Brar, N. Kurz, D. Jander, N. Gitkind, D. Hu, C. Robin, A. M. Jones, R. Kasinadhuni, and R. Humphreys, "Advances in fiber laser spectral beam combining for power scaling," Proc. SPIE 9730, 97300Y (2016). https://doi.org/10.1117/12.2214237
  10. M. Muller, C. Aleshire, H. Stark, J. Buldt, A. Steinkopff, A. Klenke, A. Tunnermann, and J. Limpert, "10.4 kW coherentlycombined ultrafast fiber laser," Proc. SPIE 11260, 112600B (2020).
  11. J. W. Dawson, M. J. Messerly, R. J. Beach, M. Y. Shverdin, E. A. Stappaerts, A. K. Sridharan, P. H. Pax, J. E. Heebner, C. W. Siders, and C. P. J. Barty, "Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power," Opt. Express 16, 13240-13266 (2008). https://doi.org/10.1364/OE.16.013240
  12. B. Yang, H. Zhang, X. Wang, R. Su, R. Tao, P. Zhou, X. Xu, and Q. Lu, "Mitigating transverse mode instability in a singleend pumped all-fiber laser oscillator with a scaling power of up to 2kW," J. Opt. 18, 105803 (2016). https://doi.org/10.1088/2040-8978/18/10/105803
  13. A. Rosales-Garcia, H. Tobioka, K. Abedin, H. Dong, Z. Varallyay, A. Szabo, T. Taunay, S. P. Sullivan, and C. Headley, "2.1 kW single mode continuous wave monolithic fiber laser," Proc. SPIE 9344, 93441G (2015). https://doi.org/10.1117/12.2077619
  14. S. Ikoma, H. K. Nguyen, M. Kashiwagi, K. Uchiyama, K. Shima, and D. Tanaka, "3 kW single stage all-fiber Yb-doped single-mode fiber laser for highly reflective and highly thermal conductive materials processing," Proc. SPIE 10083, 100830Y (2017). https://doi.org/10.1117/12.2250294
  15. B. Yang, H. Zhang, C. Shi, R. Tao, R. Su, P. Ma, X. Wang, P. Zhou, X. Xu, and Q. Lu, "3.05 kW monolithic fiber laser oscillator with simultaneous optimizations of stimulated Raman scattering and transverse mode instability," J. Opt. 20, 025802 (2018). https://doi.org/10.1088/2040-8986/aa9ec0
  16. P. Yan, Y. Huang, J. Sun, D. Li, X. Wang, M. Gong, and Q. Xiao, "3.1 kW monolithic MOPA configuration fibre laser bidirectionally pumped by non-wavelength-stabilized laser diodes," Laser Phys. Lett. 14, 080001 (2017). https://doi.org/10.1088/1612-202X/aa7c92
  17. H. Yu, H. Zhang, H. Lv, X. Wang, J. Leng, H. Xiao, S. Guo, P. Zhou, X. Xu, and J. Chen, "3.15 kW direct diode-pumped near diffraction-limited all-fiber-integrated fiber laser," Appl. Opt. 54, 4556-4560 (2015). https://doi.org/10.1364/AO.54.004556
  18. H. Lin, R. Tao, C. Li, B. Wang, C. Guo, Q. Shu, P. Zhao, L. Xu, J. Wang, F. Jing, and Q. Chu, "3.7 kW monolithic narrow linewidth single mode fiber laser through simultaneously suppressing nonlinear effects and mode instability," Opt. Express 27, 9716-9724 (2019). https://doi.org/10.1364/OE.27.009716
  19. F. Beier, C. Hupel, S. Kuhn, S. Hein, J. Nold, F. Proske, B. Sattler, A. Liem, C. Jauregui, J. Limpert, N. Haarlammert, T. Schreiber, R. Eberhardt, and A. Tunnermann, "Single mode 4.3 kW output power from a diode pumped Yb-doped fiber amplifier," Opt. Express 25, 14892-14899 (2017). https://doi.org/10.1364/OE.25.014892
  20. Y. J. Oh, J. S. Park, J. W. Kim, and H. Jeong, "Tandem-pumped Yb-doped fiber lasers with 1 kW output," in Proc. Advanced Laser and Their Applications (Jeju, Korea, May 2018), P026.
  21. S. Jeong, K. Kim, T. Kim, S. Lee, H. Yang, J. Lee, K. H. Lee, J. H. Lee, and M.-S. Jo, "All-fiber 1.5-kW-class single-mode Yb-doped polarization-maintaining fiber laser with 10 GHz linewidth," Korean J. Opt. Photon. 31, 223-230 (2020). https://doi.org/10.3807/KJOP.2020.31.5.223
  22. H. Jeong, K. H. Lee, J. Lee, D.-J. Kim, J. H. Lee, and M. Jo, "High-beam-quality 2-kW-class spectrally combined laser using narrow-linewidth ytterbium-doped polarization-maintaining fiber amplifiers," Korean J. Opt. Photon. 31, 218-222 (2020). https://doi.org/10.3807/KJOP.2020.31.5.218
  23. J. Lee, K. H. Lee, H. Jeong, M. Park, J. H. Seung, and J. H. Lee, "2.05 kW all-fiber high-beam-quality fiber amplifier with stimulated Brillouin scattering suppression incorporating a narrow-linewidth fiber-Bragg-grating-stabilized laser diode seed source," Appl. Opt. 58, 6251-6256 (2019). https://doi.org/10.1364/AO.58.006251
  24. H. Zhang, H. Xiao, P. Zhou, X. Wang, and X. Xu, "High power Yb-Raman combined nonlinear fiber amplifier," Opt. Express 22, 10248-10255 (2014). https://doi.org/10.1364/OE.22.010248
  25. A. Hardy and R. Oron, "Signal amplification in strongly pumped fiber amplifiers," IEEE J. Quantum Electron. 33, 307- 313 (1997). https://doi.org/10.1109/3.555997
  26. Y. Fan, B. He, J. Zhou, J. Zheng, H. Liu, Y. Wei, J. Dong, and Q. Lou, "Thermal effects in kilowatt all-fiber MOPA," Opt. Express 19, 15162-15172 (2011). https://doi.org/10.1364/OE.19.015162