DOI QR코드

DOI QR Code

Characterization of Rhizophora SPP. particleboards with SOY protein isolate modified with NaOH/IA-PAE adhesive for use as phantom material at photon energies of 16.59-25.26 keV

  • 투고 : 2019.10.02
  • 심사 : 2020.06.03
  • 발행 : 2021.01.25

초록

In this work, Rhizophora spp. particleboard phantoms were made using SPI-based adhesives, modified with sodium hydroxide and itaconic acid polyamidoamine-epichlorohydrin (0, 5, 10, and 15 wt%). An X-ray computed tomography (CT) imaging system was used to ascertain the CT numbers and density distribution profiles of the particleboards. The SPI-based/NaOH/IA-PAE/Rhizophora spp. particleboard phantoms with 15 wt% IA-PAE addition level had the highest solid content, flexural strength, flexural modulus, and internal bonding strength of 36.06 ± 1.08%, 18.61 ± 0.38 Nmm-2, 7605.76 ± 0.89 Nmm-2, and 0.463 ± 0.053 Nmm-2, respectively. The moisture content, mass density, water absorption, and dimensional stability were 6.93 ± 0.27%, 0.962 ± 0.037 gcm-3, 22.36 ± 2.47%, and 10.90 ± 0.86%, respectively. The results revealed that the mass attenuation coefficients and effective atomic number values within the 16.59-25.26 keV photon energy region, were close to the calculated XCOM values in water, with a p-value of 0.077. Moreover, the CT images showed that the dissimilarities in the discrepancy of the profile density decreased as the IA-PAE concentrations increased. Therefore, these results support the appropriateness of the SPI-based/NaOH/IA-PAE/Rhizophora spp. particleboard with 15 wt% IA-PAE adhesive as a suitable tissue-equivalent phantom material for medical health applications.

키워드

과제정보

The authors thank the Universiti Sains Malaysia (USM) for providing financial support from the Fundamental Research Grant Scheme (203/PTEKIND/6711525), and (304/PFIZIK/6316173) for this research.

참고문헌

  1. F.M. Khan, The Physics of Radiation Therapy, Lippincott Williams & Wilkins, Philadelphia, USA, 2010.
  2. A. Abuarra, R. Hashim, S. Bauk, S. Kandaiya, E.T. Tousi, Fabrication and characterization of gum Arabic bonded Rhizophora spp. particleboards, Mater. Des. 60 (2014) 108-115, https://doi.org/10.1016/j.matdes.2014.03.032.
  3. D. Ippolito, S. Sironi, M. Pozzi, L. Antolini, L. Ratti, C. Alberzoni, E.B. Leone, F. Meloni, M.G. Valsecchi, F. Fazio, Hepatocellular carcinoma in cirrhotic liver disease: functional computed tomography with perfusion imaging in the assessment of tumor vascularization, Acad. Radiol. 15 (2008) 919-927. https://doi.org/10.1016/j.acra.2008.02.005
  4. J.H. Fromm, I. Sautter, D. Matthies, J. Kremer, P. Schumacher, C. Ganter, Xylem water content and wood density in spruce and oak trees detected by high-resolution computed tomography, Plant Physiol. 127 (2001) 416-425. https://doi.org/10.1104/pp.010194
  5. P.K.L. Ng, N. Sivasothi, A Guide to the Mangroves of Singapore I: the Ecosystem and Plant Diversity, Singapore Science Centre, 1999, pp. 150-151.
  6. N.C. Duke, J.A. Allen, Rhizophora mangle, R. Samoensis, R. Racemosa, R. harrisonii, Atlantic-east Pacific red mangrove), in: Species Profiles for Pacific Island Agroforestry, 2006. Ver. 2.1.
  7. D.P. Banjade, A.A. Tajuddin, A. Shukri, A study of Rhizophora spp. wood phantom for dosimetric purposes using high-energy photon and electron beams, Appl. Radiat. Isot. 55 (2001) 297-302, https://doi.org/10.1016/S0969-8043(01)00057-4.
  8. A. Hermawan, T. Ohuchi, N. Fujimoto, Y. Murase, Manufacture of composite board using wood prunings and waste porcelain stone, J. Wood Sci. 55 (30) (2009) 74-79, https://doi.org/10.1007/s10086-008-1000-6.
  9. X.S. Sun, L. Zhu, D. Wang, Latex Based Adhesives Derived from Soybeans A1, 2008. US Patent 0287635.
  10. C. Liu, Y. Zhang, X. Li, J. Luo, Q. Gao, J. Li, "Green" bio-thermoset resins derived from soy protein isolate and condensed tannins, Ind. Crop. Prod. 108 (2017) 363-370, https://doi.org/10.1016/j.indcrop.2017.06.057.
  11. P. Gupta, K.K. Nayak, Characteristics of protein-based biopolymer and its application, Polym. Eng. Sci. 55 (3) (2015) 485-498, https://doi.org/10.1002/pen.23928.
  12. C. Xia, L. Wang, Y. Dong, S. Zhang, S.Q. Shi, L. Cai, Soy protein isolate-based films cross-linked by epoxidized soybean oil, RSC Adv. 5 (101) (2015) 82765-82771, https://doi.org/10.1039/C5RA15590H.
  13. Y. Li, H. Chen, Y. Dong, K. Li, L. Li, J. Li, Carbon nanoparticles/soy protein isolate bio-films with excellent mechanical and water barrier properties, Ind. Crop. Prod. 82 (2016) 133-140, https://doi.org/10.1016/j.indcrop.2015.11.072.
  14. F. Xu, Y. Dong, W. Zhang, S. Zhang, L. Li, J. Li, Preparation of cross-linked soy protein isolate-based environmentally-friendly films enhanced by PTGE and PAM, Ind. Crop. Prod. 67 (2015) 373-380, https://doi.org/10.1016/j.indcrop.2015.01.059.
  15. K. Li, H. Chen, Y. Li, J. Li, J. He, Endogenous Cu and Zn nanocluster regulated soy protein isolate films: excellent hydrophobicity and flexibility, RSC Adv. 5 (82) (2015) 66543-66548, https://doi.org/10.1039/C5RA09231K.
  16. C. Gui, G. Wang, D. Wu, J. Zhu, X. Liu, Synthesis of a bio-based polyamidoamine-epichlorohydrin resin and its application for soy-based adhesives, Int. J. Adhesion Adhes. 44 (2013) 237-242, https://doi.org/10.1016/j.ijadhadh.2013.03.011.
  17. Japanese Industrial Standard (J.I.S). JIS A-5908 Particleboards, Standardization Promotion Department. Japanese Standards Association, Tokyo, Japan, 2003, pp. 1-24.
  18. B. Spraul, R. Brady, A. Allen, Adhesive Composition of Low Molecular Weight Polyaminoamide-Epichlorohydrin (PAE) Resin and Protein, US Patent 2008/0050602, 2008.
  19. K. Li, S. Peshkova, X. Geng, Investigation of soy protein-Kymene® adhesive systems for wood composites, J. Am. Oil Chem. Soc. 81 (2004) 487-491. https://doi.org/10.1007/s11746-004-0928-1
  20. B.Z. Shakhreet, S. Bauk, A. Shukri, Mass attenuation coefficients of fabricated Rhizophora spp. particleboard for the 15.77 to 25.27 keV range, Am. J. Sci. Ind. Res. 4 (2013) 89-94, https://doi.org/10.5251/ajsir.2013.4.1.89.94.
  21. A. Tursucu, D. Demir, O. Onder, Effective atomic number determination of rare earth oxides with scattering intensity ratio, Sci. Tech. Nucl. Inst. (2013) 1-6, https://doi.org/10.1155/2013/738978.
  22. P. Duvauchelle, G. Peix, D. Babot, Effective atomic number in the Rayleigh to Compton scattering ratio, Nucl. Instrum. Methods Sect. B 155 (1999) 221-228, https://doi.org/10.1016/S0168-583X(99)00450-4.
  23. L. Segal, J. Creely, A. Martin, C. Conrad, An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer, Textil. Res. J. 29 (10) (1959) 786, https://doi.org/10.1177/004051755902901003.
  24. B. Akca, S.Z. Erzeneoglu, The mass attenuation coefficients, electronic, atomic, and molecular cross sections, effective atomic numbers, and electron densities for compounds of some biomedically important elements at 59.5 keV, Hindawi Publish, Cor. Sci. Technol. Nucl. Instal. (2014) 1-8, https://doi.org/10.1155/2014/901465.
  25. M.J. Berger, J.H. Hubbell, XCOM: Photon Cross Sections on a Personal Computer, U.S. department of commerce, 1987, pp. 1-10, https://doi.org/10.2172/6016002.
  26. T.S. Curry, J.E. Dowdey, R.C. Murry, E.E. Christensen, Christensen's Physics of Diagnostic Radiology, fourth ed., Lippincott Williams & Wilkins, 1990.
  27. M.W. Marashdeh, S. Bauk, A.A. Tajuddin, R. Hashim, Measurement of mass attenuation coefficients of Rhizophora spp. binderless particleboards in the 16.59-25.26 keV photon energy range and their density profile using X-ray computed tomography, Appl. Radiat. Isot. 70 (2012) 656-662, https://doi.org/10.1016/j.apradiso.2012.01.008.
  28. M.F.M. Yusof, R. Hashim, A.A. Tajuddin, S. Bauk, O. Sulaiman, Characterization of tannins-added Rhizophora spp. particleboards as phantom materials for photon beams, Ind. Crop. Prod. 95 (2017) 467-474, https://doi.org/10.1016/j.indcrop.2016.10.057.
  29. C. Oo, M. Kassim, A. Pizzi, Characterization and performance of Rhizophora apiculata mangrove polyflavonoid tannins in the adsorption of copper (II) and lead (II), Ind. Crop. Prod. 30 (2009) 152-161, https://doi.org/10.1016/j.indcrop.2009.03.002.
  30. J.L. Luo, J. Luo, X.N. Li, Q. Gao, J.Z. Li, Effects of polyisocyanate on properties and pot life of epoxy resin cross-linked soybean meal-based bio-adhesive, J. Appl. Polym. Sci. 133 (7) (2016) 1-7, https://doi.org/10.1002/app.43362.
  31. N.N. Anil, G.D. Trina, Crosslinked Thermoset Resins and Methods Thereof, US Patent 10179807 B2, 2019.
  32. P. Nuthong, S. Benjakul, T. Prodpran, Characterization of porcine plasma protein-based films as affected by pretreatment and cross-linking agents, Int. J. Biol. Macromol. 44 (2) (2009) 143-148, https://doi.org/10.1016/j.ijbiomac.2008.11.006.
  33. Y. Zhao, Z.K. Chen, Y. Liu, H.M. Xiao, Q.P. Feng, S.Y. Fu, Simultaneously enhanced cryogenic tensile strength and fracture toughness of epoxy resins by carboxylic nitrile-butadiene nano-rubber, Composites Part A 55 (2013) 178-187, https://doi.org/10.1016/j.compositesa.2013.09.005.
  34. AAPM, A protocol for the determination of absorbed dose from high energy photon and electron beams; Task Group-21, Med. Phys. 10 (1983) 741-771, https://doi.org/10.1118/1.595446.
  35. J. Wu, Q. Sun, H. Huang, Y. Duan, G. Xiao, T. Le, Enhanced physico-mechanical, barrier and antifungal properties of soy protein isolate film by incorporating both plant-sourced cinnamaldehyde and facile synthesized zinc oxide nano-sheets, Colloids Surf. B Biointerfaces 180 (2019) 31-38, https://doi.org/10.1016/j.colsurfb.2019.04.041.
  36. N.S. Sulaiman, R. Hashim, M.H.M. Amini, O. Sulaiman, S. Hiziroglu, Evaluation of the properties of particleboard made using oil palm starch modified with epichlorohydrin, Bioresources 8 (1) (2013) 283-301.
  37. Q. Gao, S.Q. Shi, J. Li, K. Liang, X. Zhang, Soybean meal-based wood adhesives enhanced by modified polyacrylic acid solution, Bioresources 7 (2012) 946-956.
  38. X. Zhang, Y. Zhu, Y. Yu, J. Song, Improved performance of soy flour-based adhesive with a lignin-based resin, Polymer 9 (261) (2017) 1-10, https://doi.org/10.3390/polym9070261.
  39. N.S. Hettiarachchy, U. Kalapathy, D.J. Myers, Alkali-modified soy protein with improved adhesive and hydrophobic properties, J. Am. Oil Chem. Soc. 72 (12) (1995) 1461-1464, https://doi.org/10.1007/BF02577838.
  40. N. Kucuk, M. Cakir, N.A. Isitman, Mass attenuation coefficients, effective atomic numbers and effective electron densities for some polymers, Radiat. Protect. Dosim. 153 (1) (2013) 127-134, https://doi.org/10.1093/rpd/ncs091.
  41. F. Akman, M.R. Kacal, Investigation of radiation attenuation parameters of some drugs used in chemotherapy in wide energy region, J. Radiol. Oncol. 2 (2018), https://doi.org/10.29328/journal.jro.1001021, 047-052.

피인용 문헌

  1. Influence of Different Percentages of Binders on the Physico-Mechanical Properties of Rhizophora spp. Particleboard as Natural-Based Tissue-Equivalent Phantom for Radiation Dosimetry Applications vol.13, pp.11, 2021, https://doi.org/10.3390/polym13111868