References
- K. Aoto, P. Dufour, H.Y. Yang, J.P. Glatz, Y. Kim, Y. Ashurko, R. Hill, N. Uto, A summary of sodium-cooled fast reactor development, Prog. Nucl. Energy 77 (2014) 247-265. https://doi.org/10.1016/j.pnucene.2014.05.008
- H. Ohshima, S. Kubo, Sodium-cooled fast reactor, in: Igor L. Pioro (Ed.), Handbook of Generation IV Nuclear Reactors, Woodhead Publishing, Elsevier, Duxford, UK, 2016, pp. 98-118.
- G.L. Hofman, J.H. Bottcher, J.A. Buzzell, G.M. Schwartzenberger, Thermal conductivity and thermal expansion of hot-pressed trisodium uranate (Na3UO4), J. Nucl. Mater. 139 (1986) 151-155. https://doi.org/10.1016/0022-3115(86)90032-2
- M.G. Adamson, M.A. Mignanelli, P.E. Potter, M.H. Rand, On the oxygen thresholds for the reactions of liquid sodium with urania and urania-plutonia solid solutions, J. Nucl. Mater. 97 (1981) 203-212. https://doi.org/10.1016/0022-3115(81)90434-7
- M.A. Mignanelli, P.E. Potter, An investigation of the reaction between sodium and hyperstoichiometric urania, J. Nucl. Mater. 114 (1983) 168-180. https://doi.org/10.1016/0022-3115(83)90254-4
- M.A. Mignanelli, P.E. Potter, The reactions of sodium with urania, plutonia and their solid solutions, J. Nucl. Mater. 130 (1985) 289-297. https://doi.org/10.1016/0022-3115(85)90318-6
- R. Scholder, H. Glaser, uber Lithium- und Natriumuranate(V) und uber strukturelle Beziehungen zwischen den Verbindungstypen Li7AO6 und Li8AO6, Z. Anorg. Allg. Chem. 327 (1964) 15-27. https://doi.org/10.1002/zaac.19643270104
- J.P. Marcon, O. Pesme, M. France, Rev. Int. Hautes Temp. Refract. 9 (1972) 193-196.
- S.F. Bartram, R.E. Fryxell, Preparation and crystal structure of NaUO3 and Na11U5O16, J. Inorg. Nucl. Chem. 32 (1970) 3701-3706. https://doi.org/10.1016/0022-1902(70)80187-7
- R. Lorenzelli, T. Athanassiadis, R. Pascard, Chemical reactions between sodium and (U,Pu)O2 mixed oxides, J. Nucl. Mater. 130 (1985) 298-315. https://doi.org/10.1016/0022-3115(85)90319-8
- P.A.G. O'Hare, W.A. Shinn, F.C. Mrazek, A.E. Martin, Thermodynamic investigation of trisodium uranium(V) oxide (Na3UO4) I. Preparation and enthalpy of formation, J. Chem. Thermodyn. 4 (1972) 401-409. https://doi.org/10.1016/0021-9614(72)90023-7
- D.R. Fredrickson, P.A.G. O'Hare, Enthalpy increments for α- and β-Na2UO4 and Cs2UO4 by drop calorimetry the enthalpy of the α to β transition in Na2UO4, J. Chem. Thermodyn. 8 (1976) 353-360. https://doi.org/10.1016/0021-9614(76)90075-6
- G.L. Hofman, J.H. Bottcher, J.A. Buzzell, G.M. Schwartzenberger, Thermal conductivity and thermal expansion of hot-pressed trisodium uranate (Na3UO4), J. Nucl. Mater. 139 (1986) 151-155. https://doi.org/10.1016/0022-3115(86)90032-2
- H.C. Chen, W.Y. Tian, First-principles investigation of the physical properties of cubic and orthorhombic phase Na3UO4, Physica B 524 (2017) 144-148. https://doi.org/10.1016/j.physb.2017.08.052
- A.L. Smith, P.E. Raison, L. Martel, D. Prieur, T. Charpentier, G. Wallez, E. Suard, A.C. Scheinost, C. Hennig, P. Martin, K.O. Kvashnina, A.K. Cheetham, R.J.M. Konings, A new look at the structural properties of trisodium uranate Na3UO4, Inorg. Chem. 54 (7) (2015) 3552-3561. https://doi.org/10.1021/acs.inorgchem.5b00136
- M.-C. Illy, A.L. Smith, G. Wallez, P.E. Raison, R. Caciuffo, R.J.M. Konings, Thermal expansion of the nuclear fuel-sodium reaction product Na3(U0.84(2),Na0.16(2))O4 - structural mechanism and comparison with related sodium-metal ternary oxides, J. Nucl. Mater. 490 (2017) 101-107. https://doi.org/10.1016/j.jnucmat.2017.03.045
- J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin, X.L. Zhou, K. Burke, Restoring the density-gradient expansion for exchange in solids and surfaces, Phys. Rev. Lett. 100 (2008) 136406. https://doi.org/10.1103/PhysRevLett.100.136406
- B. Sadigh, A. Kutepov, A. Landa, P. Soderlind, Assessing relativistic effects and electron correlation in the actinide metals Th to Pu, Appl. Sci. 9 (2019) 5020. https://doi.org/10.3390/app9235020
- J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (1996) 3865-3868. https://doi.org/10.1103/PhysRevLett.77.3865
- C.G. Broyden, The convergence of a class of double-rank minimization algorithms 2. The new algorithm, J. Inst. Maths. Appl. 6 (1970) 222-231. https://doi.org/10.1093/imamat/6.3.222
- R. Fletcher, A new approach to variable metric algorithms, Comput. J. 13 (1970) 317-322. https://doi.org/10.1093/comjnl/13.3.317
- D. Goldfarb, A family of variable-metric methods derived by variational means, Math. Comput. 24 (1970) 23-26. https://doi.org/10.1090/S0025-5718-1970-0258249-6
- D.F. Shanno, Conditioning of quasi-Newton methods for function minimization, Math. Comput. 24 (1970) 647-656. https://doi.org/10.1090/S0025-5718-1970-0274029-X
- R.A. Cowley, Acoustic phonon instabilities and structural phase transitions, Phys. Rev. B 13 (1976) 4877-4885. https://doi.org/10.1103/PhysRevB.13.4877
- M. Bom, K. Huang, Dynamical Theory of Crystal Lattices, Clarendon, Oxford, 1954.
- R. Hill, The elastic behaviour of a crystalline aggregate, Proc. Phys. Soc. 65 (1952) 349-354. https://doi.org/10.1088/0370-1298/65/5/307
- H.C. Chen, J.C. Wei, Y.Q. Chen, W.Y. Tian, Theoretical investigation of the mechanical and thermodynamic properties of titanium pernitride under high temperature and high pressure, J. Alloys Compd. 726 (2017) 1179-1185. https://doi.org/10.1016/j.jallcom.2017.08.107
- J.P. Watt, Hashin-Shtrikman bounds on the effective elastic moduli of polycrystals with monoclinic symmetry, J. Appl. Phys. 51 (1980) 1520. https://doi.org/10.1063/1.327803
- S.F. Pugh, XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals, Phil. Mag. 45 (1954) 823-843. https://doi.org/10.1080/14786440808520496
- G.N. Greaves, A.L. Greer1, R.S. Lakes, T. Rouxel, Poisson's ratio and modern materials, Nat. Mater. 10 (2011) 823-837. https://doi.org/10.1038/nmat3134
- D.G. Pettifor, Theoretical predictions of structure and related properties of intermetallics, Mater. Sci. Technol. 8 (1992) 345, 329. https://doi.org/10.1179/mst.1992.8.4.345
- X.Q. Chen, H.Y. Niu, D.Z. Li, Y.Y. Li, Modeling hardness of polycrystalline materials and bulk metallic glasses, Intermetallics 19 (2011) 1275-1281. https://doi.org/10.1016/j.intermet.2011.03.026
- H. Ozisik, E. Deligoz, K. Colakoglu, E. Ateser, The first principles studies of the MgB7 compound: Hard material, Intermetallics 39 (2013) 84-88. https://doi.org/10.1016/j.intermet.2013.03.016
- J.F. Nye, Physical Properties of Crystals, Oxford University Press Inc., New York, 1985, p. 145.
- L. Anderson, A simplified method for calculating the Debye temperature from elastic constants, J. Phys. Chem. Solid. 24 (1963) 909-917. https://doi.org/10.1016/0022-3697(63)90067-2
- D.G. Cahill, S.K. Watson, R.O. Pohl, Lower limit to the thermal conductivity of disordered crystals, Phys. Rev. B 46 (1992) 6131. https://doi.org/10.1103/PhysRevB.46.6131
- D.R. Clarke, Materials selection guidelines for low thermal conductivity thermal barrier coatings, Surf. Coating. Technol. 163-164 (2003) 67-74. https://doi.org/10.1016/S0257-8972(02)00593-5
- D.R. Clarke, C.G. Levi, Materials design for the next generation thermal barrier coatings, Annu. Rev. Mater. Res. 33 (2003) 383-417. https://doi.org/10.1146/annurev.matsci.33.011403.113718
- J.P. Long, C.Z. Shu, L.J. Yang, M. Yang, Predicting crystal structures and physical properties of novel superhard p-BN under pressure via first-principles investigation, J. Alloys Compd. 644 (2015) 638-644. https://doi.org/10.1016/j.jallcom.2015.04.229
- W.Y. Tian, J.H. Cai, H.C. Chen, Theoretical study the electronic, elastic properties and thermodynamics properties of ternary phosphide SrPt6P2, J. Phys. Chem. Solid. 106 (2017) 10-15. https://doi.org/10.1016/j.jpcs.2017.03.002
- M.A. Blanco, E. Francisco, V. Luana, GIBBS: isothermal-isobaric thermodynamics of solids from energy curves using a quasi-harmonic Debye model, Comput. Phys. Commun. 158 (2004) 57-72. https://doi.org/10.1016/j.comphy.2003.12.001
Cited by
- Theoretical prediction of anisotropic in elasticity, density of states and thermodynamic properties of Ti-X (X = Fe, Co, Zn) vol.94, pp.12, 2021, https://doi.org/10.1140/epjb/s10051-021-00240-6