DOI QR코드

DOI QR Code

Extraction behaviors of platinum group metals in simulated high-level liquid waste by a hydrophobic ionic liquid bearing an amino moiety

  • Wu, Hao (Department of Quantum Science and Energy Engineering, Graduate School of Engineering, Tohoku University) ;
  • Kim, Seong-Yun (Department of Quantum Science and Energy Engineering, Graduate School of Engineering, Tohoku University) ;
  • Takahashi, Tadayuki (Department of Quantum Science and Energy Engineering, Graduate School of Engineering, Tohoku University) ;
  • Oosugi, Haruka (Department of Quantum Science and Energy Engineering, Graduate School of Engineering, Tohoku University) ;
  • Ito, Tatsuya (Department of Quantum Science and Energy Engineering, Graduate School of Engineering, Tohoku University) ;
  • Kanie, Kiyoshi (Institute of Multidisciplinary Research for Advanced Materials, Tohoku University)
  • Received : 2020.07.13
  • Accepted : 2020.09.28
  • Published : 2021.04.25

Abstract

A hydrophobic ionic liquid including an amino moiety ([DiOcAPmim][NTf2]) was synthesized. Its extraction behaviors towards Pd(II), Ru(III), Rh(III) were investigated in nitric acid aqueous solution as a function of contact time, effect of concentration of nitric acid, effect of temperature, and effect of co-existing metal ions. The extraction kinetics of Pd(II) was fairly fast and extraction equilibrium can be attained within only 5 min under the [HNO3] = 2.05 M. When [HNO3]< 1 M, the extraction percentage of Pd(II), Ru(III), Rh(III) were all above 80%. When [HNO3] reached 2 M, all of the extraction percentage decreased and in an order of Pd(II)>Ru(III)>Rh(III). When [HNO3]> 2 M, the extraction performance gradually recovered. The effect of temperature can slightly affect the extraction performance of Pd(II). Furthermore, in simulated high-level liquid waste, [DiOcAPmim][NTf2] showed a better preference towards Pd(II) under the interference of various other co-existing metal ions.

Keywords

References

  1. M. Rzelewska-Piekut, M. Regel-Rosocka, Separation of Pt(IV), Pd(II), Ru(III) and Rh(III) from model chloride solutions by liquid-liquid extraction with phosphonium ionic liquids, Separ. Purif. Technol. 212 (2019) 791-801, https://doi.org/10.1016/j.seppur.2018.11.091.
  2. S.Y. Ning, S.C. Zhang, W. Zhang, J. Zhou, S.Y. Wang, X.P. Wang, Y.Z. Wei, Separation and recovery of Rh, Ru and Pd from nitrate solution with a silicabased IsoBu-BTP/SiO2-P adsorbent, Hydrometallurgy 191 (2020) 105207, https://doi.org/10.1016/j.hydromet.2019.105207.
  3. R.P. Bush, Recovery of platinum group metals from high level radioactive waste, Platin. Met. Rev. 35 (1991) 202-208. https://www.technology.matthey.com/article/35/4/202-208/.
  4. F.H. Li, Y. Shang, Z.M. Ding, H.Q. Weng, J.X. Xiao, M.Z. Lin, Efficient extraction and separation of palladium (Pd) and ruthenium (Ru) from simulated HLLW by photoreduction, Separ. Purif. Technol. 182 (2017) 9-18, https://doi.org/10.1016/j.seppur.2017.03.029.
  5. H. Jena, S. Raghavan, V. Pogaku, P.R. Bandi, G.K.K. Vadakkapet, Removal of Ru from simulated high-level waste prior to the final vitrification into borosilicate glass using tin as the alloying element: feasibility study, J. Hazard. Toxic Radioact. Waste 22 (2018), 04018018, https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000408.
  6. Y.L. Xu, S.Y. Kim, T. Ito, H. Tokuda, K. Hitomi, K. Ishii, Chromatographic separation of platinum group metals from simulated high level liquid waste using microporous silica-based adsorbents, J. Chromatogr. A 1312 (2013) 37-41, https://doi.org/10.1016/j.chroma.2013.08.089.
  7. D. parajuli, K. hirota, N. Seko, Effective separation of palladium from simulated high level radioactive waste, J. Radioanal. Nucl. Chem. 288 (2011) 53-58, https://doi.org/10.1007/s10967-010-0870-4.
  8. R. Ruhela, J.N. Sharma, B.S. Tomar, V.C. Adya, T.K. Sheshgiri, R.C. Hubli, A.K. Suri, N,N,N',N'-Tetra(2-Ethylhexyl) thiodiglycolamide T(2EH)TDGA: a promising ligand for separation and recovery of palladium from high level liquid waste (HLLW) solutions, Separ. Sci. Technol. 46 (2011) 965-971, https://doi.org/10.1080/01496395.2010.539191.
  9. S. Genand-Pinaz, N. Papaiconomou, J.M. Leveque, Removal of platinum from water by precipitation or liquideliquid extraction and separation from gold using ionic liquids, Green Chem. 15 (2013) 2493-2501, https://doi.org/10.1039/C3GC40557E.
  10. A. Patel, R. Dawson, Recovery of platinum group metal value via potassium iodide leaching, Hydrometallurgy 157 (2015) 219-225, https://doi.org/10.1016/j.hydromet.2015.08.008.
  11. T. Ito, S.Y. Kim, Study on separation of platinum group metals from high-level liquid waste using sulfur-containing amic acid-functionalized silica, J. Ion Exch. 29 (2018) 97-103, https://doi.org/10.5182/jaie.29.97.
  12. S. Ikeda, T. Mori, Y. Ikeda, K. Takao, Microwave-assisted solvent extraction of inert platinum group metals from HNO3(aq) to betainium-based thermomorphic ionic liquid, ACS Sustain. Chem. Eng. 4 (2016) 2459-2463, https://doi.org/10.1021/acssuschemeng.6b00186.
  13. N. Iyer, R. Ruhela, A. Das, M. Yadav, A.K. Singh, J.K. Chakravartty, Novel imino diacetamide grafted styrene divinyl benzene resin for separation and recovery of palladium from simulated high level liquid waste, Separ. Sci. Technol. 51 (2016) 1971-1978, https://doi.org/10.1080/01496395.2016.1199570.
  14. H. Wu, X.X. Zhang, X.B. Yin, Y. Inaba, M. Harigai, K. Takeshita, Selective separation of cadmium (II) from zinc (II) by a novel hydrophobic ionic liquid including N,N,N',N'-tetrakis(2-methylpyridyl)-1,2-phenylenediamine-4-amido structure: a hard-soft donor combined method, Dalton Trans. 47 (2018) 10063-10070, https://doi.org/10.1039/C8DT02228C.
  15. M.J. Earle, K.R. Seddon, Ionic liquids. Green solvents for the future, Pure Appl. Chem. 72 (2000) 1391-1398, https://doi.org/10.1351/pac200072071391.
  16. E.Bosse, L. Berthon, N. Zorz, J. Monget, C. Berthon, I. Bisel, S. Legand, P. Moisy, Stability of [MeBu3N][Tf2N] under gamma irradiation, Dalton Trans. (2008) 924-931, https://doi.org/10.1039/B713661G.
  17. L.Y. Yuan, J. Peng, L. Xu, M.L. Zhai, J.Q. Li, G.S. Wei, Radiation effects on hydrophobic ionic liquid [C4mim][NTf2] during extraction of strontium ions, J. Phys. Chem. B 113 (2009) 8948-8952, https://doi.org/10.1021/jp9016079.
  18. A. Cieszynska, M. Wisniewski, Extraction of palladium(II) from chloride solutions with Cyphos®IL 101/toluene mixtures as novel extractant, Separ. Purif. Technol. 73 (2010) 202-207, https://doi.org/10.1016/j.seppur.2010.04.001.
  19. K. Sasaki, K. Takao, T. Suzuki, T. Mori, T. Araia, Y. Ikeda, Extraction of Pd(II), Rh(III) and Ru(III) from HNO3 aqueous solution to betainium bis-(trifluoromethanesulfonyl)imide ionic liquid, Dalton Trans. 43 (2014) 5648-5651, https://doi.org/10.1039/C4DT00091A.
  20. P.K. Mohapatra, P. Kandwal, M. Iqbal, J. Huskens, M.S. Muralia, W. Verboomb, A novel CMPO-functionalized task specific ionic liquid: synthesis, extraction and spectroscopic investigations of actinide and lanthanide complexes, Dalton Trans. 42 (2013) 4343-4347, https://doi.org/10.1039/C3DT32967D.
  21. S. Ma, K. Funaki, A. Miyazaki, A. Muramatsu, K. Kanie, Ionic liquids with amino moieties: selective and reversible extraction/back-extraction for platinum group metal ions from aqueous solutions, Chem. Lett. 46 (2017) 1422-1425, https://doi.org/10.1246/cl.170599.
  22. Z. Shultz, J.C. Gaitor, R.D. Burton, M. Regner, Y.H. Sheng, A. Mirjafari, Phosphorodithioate-functionalized ionic liquids: synthesis and physicochemical properties characterization, J. Mol. Liq. 276 (2019) 334-337, https://doi.org/10.1016/j.molliq.2018.11.166.
  23. R. Ruhela, B.S. Tomar, J.N. Sharma, T.K. Seshagiri, V.C. Adya, R.C. Hubli, A.K. Suri, Studies on the separation and recovery of palladium from simulated high level liquid waste (SHLW) solution with novel extractant N,N,N',N'-tetra (2-ethylhexyl) dithiodiglycolamide DTDGA, Separ. Sci. Technol. 48 (2013) 1049-1055, https://doi.org/10.1080/01496395.2012.724140.
  24. M.L. Dietz, J.A. Deielawa, Ion-exchange as a mode of cation transfer into room-temperature ionic liquids containing crown ethers: implications for the 'greenness' of ionic liquids as diluents in liquideliquid extraction, Chem. Commun. (2001) 2124-2125, https://doi.org/10.1039/B104349H.
  25. A. Eguchi, K. Morita, N. Hirayama, Distribution equilibria of amphoteric 8-quinolinol between 1-Alkyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide and aqueous phases and their effect on ionic liquid chelate extraction behavior of iron(III), Anal. Sci. 33 (2017) 1447-1451, https://doi.org/10.2116/analsci.33.1447.
  26. M.D. Hall, T.W. Failes, D.E. Hibbs, T.W. Hambley, Structural investigations of palladium (II) and platinum (II) complexes of salicylhydroxamic acid, Inorg. Chem. 41 (2002) 1223-1228, https://doi.org/10.1021/ic010760q.
  27. Z.W. Zheng, T. Arai, K. Takao, Kinetic and thermodynamic requirements to extend solvent compatibility in thermal-assisted extraction of inert platinum group metals, ACS Sustain. Chem. Eng. 7 (2019) 9750-9753, https://doi.org/10.1021/acssuschemeng.9b01622.
  28. A. Messadi, A. Mohamadou, S. Boudesocque, L. Dupont, E. Guillon, Task-specific ionic liquid with coordinating anion for heavy metal ion extraction: cation exchange versus ion-pair extraction, Separ. Purif. Technol. 107 (2013) 172-178, https://doi.org/10.1080/01496395.2014.952747.
  29. M.D. Ogden, S.I. Sinkov, M. Nilson, G.J. Lumetta, R.D. Hancock, K.L. Nash, Complexation of Am (III) and Nd (III) by 1, 10-phenanthroline-2, 9-dicarboxylic acid 42 (2013) 211-225, https://doi.org/10.1007/s10953-012-9940-2.
  30. M.M. Raj, A. Dharmaraja, K. Panchanatheswaran, K.A. Venkatesan, T.G. Srinivasan, P.R.V. Rao, Extraction of fission palladium(II) from nitric acid by benzoylmethylenetriphenylphosphorane (BMTPP), Hydrometallurgy 84 (2006) 118-124, https://doi.org/10.1016/J.HYDROMET.2006.05.003.
  31. K.R. Kim, M.S. Lee, D.H. Ahn, S.P. Yim, H. Chung, Preparation of functional anion-exchange resin and its selective adsorption of palladium in nitric acid medium, J. Ind. Eng. Chem. 8 (2002) 472-476.
  32. S. Kono, H. Kazama, T. Mori, T. Arai, K. Takao, Significant acceleration of PGMs extraction with UCST-type thermomorphic ionic liquid at elevated temperature, ACS Sustain. Chem. Eng. 6 (2018) 1555-1559, https://doi.org/10.1021/acssuschemeng.7b04447.
  33. V.M. Telmore, P. Kumar, P.G. Jaison, Study on complexation of palladium with thiourea-based ligands and its determination in simulated high-level liquid waste using solid phase extraction-electrospray mass spectrometry, J. Radioanal. Nucl. Chem. 318 (2018) 1249-1259, https://doi.org/10.1007/s10967-018-6165-x.
  34. P. Giridhar, K.A. Venkatesan, T.G. Srinivasan, P.R. Vasudeva Rao, Extraction of uranium(VI) from nitric acid medium by 1.1M tri-n-butylphosphate in ionic liquid diluent, J. Radioanal. Nucl. Chem. 265 (2005) 31-38, https://doi.org/10.1007/s10967-005-0785-7.

Cited by

  1. Complexation-Distribution Separated Solvent Extraction Process Designed for Rapid and Efficient Recovery of Inert Platinum Group Metals vol.6, pp.33, 2021, https://doi.org/10.1021/acsomega.1c03565
  2. High acidity- and radiation-resistant triazine-based POPs for recovery of Pd(II) from nuclear fission products vol.430, pp.p1, 2021, https://doi.org/10.1016/j.cej.2021.132618