DOI QR코드

DOI QR Code

A new burn-up module for application in fuel performance calculations targeting the helium production rate in (U,Pu)O2 for fast reactors

  • Cechet, A. (Politecnico di Milano, Department of Energy, Nuclear Engineering Division) ;
  • Altieri, S. (Politecnico di Milano, Department of Energy, Nuclear Engineering Division) ;
  • Barani, T. (Politecnico di Milano, Department of Energy, Nuclear Engineering Division) ;
  • Cognini, L. (Politecnico di Milano, Department of Energy, Nuclear Engineering Division) ;
  • Lorenzi, S. (Politecnico di Milano, Department of Energy, Nuclear Engineering Division) ;
  • Magni, A. (Politecnico di Milano, Department of Energy, Nuclear Engineering Division) ;
  • Pizzocri, D. (Politecnico di Milano, Department of Energy, Nuclear Engineering Division) ;
  • Luzzi, L. (Politecnico di Milano, Department of Energy, Nuclear Engineering Division)
  • Received : 2020.08.21
  • Accepted : 2020.12.01
  • Published : 2021.06.25

Abstract

In light of the importance of helium production in influencing the behaviour of fast reactor fuels, in this work we present a burn-up module with the objective to calculate the production of helium in both in-pile and out-of-pile conditions tracking the evolution of 23 alpha-decaying actinides. This burn-up module relies on average microscopic cross-section look-up tables generated via SERPENT high-fidelity calculations and involves the solution of the system of Bateman equations for the selected set of actinide nuclides. The results of the burn-up module are verified in terms of evolution of actinide and helium concentrations by comparing them with the high-fidelity ones from SERPENT, considering two representative test cases of (U,Pu)O2 fuel in fast reactor conditions. In addition, a code-to-code comparison is made with the independent state-of-the-art module TUBRNP (implemented in the TRANSURANUS fuel performance code) for the same test cases. The herein presented burn-up module is available in the SCIANTIX code, designed for coupling with fuel performance codes.

Keywords

Acknowledgement

This research has received funding from the Euratom research and training programme 2014-2018 through the INSPYRE Project under grant agreement No. 754329.

References

  1. D.R. Olander, Fundamental Aspects of Nuclear Reactor Fuel Elements, Technical Information Center - Energy Research and Development Administration, University of California, Berkeley, 1976.
  2. J. Rest, M.W.D. Cooper, J. Spino, J.A. Turnbull, P. Van Uffelen, C.T. Walker, Fission gas release from UO2 nuclear fuel: a review, J. Nucl. Mater. 513 (2019) 310-345. https://doi.org/10.1016/j.jnucmat.2018.08.019
  3. P. Van Uffelen, R.J.M. Konings, C. Vitanza, J. Tulenko, Analysis of reactor fuel rod behavior, Handb. Nucl. Eng. (2010) 1519-1627.
  4. P. Van Uffelen, J. Hales, W. Li, G. Rossiter, R. Williamson, A review of fuel performance modelling, J. Nucl. Mater. 516 (2019) 373-412. https://doi.org/10.1016/j.jnucmat.2018.12.037
  5. J.E. Kelly, Generation IV International Forum: a decade of progress through international cooperation, Prog. Nucl. Energy 77 (2014) 240-246. https://doi.org/10.1016/j.pnucene.2014.02.010
  6. GIF (Generation IV International Forum), Annual Report 2019, OECD/NEA No. 7527, 2019.
  7. J.F. Briesmeister, MCNP4C - A General Monte Carlo N Particle Transport Code, Manual LA-13709-M, 2000.
  8. L.C. Leal, O.W. Hermann, S.M. Bowman, C.V. Parks, Automatic rapid process for the generation of problem-dependent SAS2H/ORIGEN-S cross-section libraries, Nucl. Technol. 127 (1) (1999) 1-23. https://doi.org/10.13182/NT99-A2980
  9. I. Palmer, K.W. Hesketh, P.A. Jackson, A model for predicting the radial power profile in a fuel pin. in: IAEA specialists meeting on water reactor fuel element performance computer modelling, Preston, United Kingdom, 15-19 March 1982, IAEA, 1983.
  10. K. Lassmann, TRANSURANUS: a fuel rod analysis code ready for use, Nucl. Mater. Fission React. (1992) 295-302.
  11. K. Lassmann, C. O'Carroll, J. van de Laar, C.T. Walker, The radial distribution of plutonium in high burnup UO2 fuels, J. Nucl. Mater. 208 (3) (1994) 223-231. https://doi.org/10.1016/0022-3115(94)90331-X
  12. A. Schubert, P. Van Uffelen, J. van de Laar, C.T. Walker, W. Haeck, Extension of the TRANSURANUS burn-up model, J. Nucl. Mater. 376 (1) (2008) 1-10. https://doi.org/10.1016/j.jnucmat.2008.01.006
  13. European Commission, TRANSURANUS Handbook, in: Joint Research Centre Directorate G - Nuclear Safety & Security, "Transuranus Handbook, 2018. Karlsruhe, Germany.
  14. J.I. Tijero Cavia, A. Schubert, P. Van Uffelen, P. Poeml, S. Bremier, J. Somers, M. Seidl, R. Macian-Juan, The TRANSURANUS burn-up model for thorium fuels under LWR conditions, Nucl. Eng. Des. 326 (2018) 311-319. November 2017. https://doi.org/10.1016/j.nucengdes.2017.11.021
  15. C.B. Lee, D.H. Kim, J.S. Song, J.G. Bang, Y.H. Jung, RAPID model to predict radial burnup distribution in LWR UO2 fuel, J. Nucl. Mater. 282 (2-3) (2000) 196-204. https://doi.org/10.1016/S0022-3115(00)00408-6
  16. S. Lemehov, J. Nakamura, M. Suzuki, PLUTON: a three-group model for the radial distribution of plutonium, burnup, and power profiles in highly irradiated LWR fuel rods, Nucl. Technol. 133 (2) (2001) 153-168. https://doi.org/10.13182/NT01-A3166
  17. S.Y. Kurchatov, V.V. Likhanskii, A.A. Sorokin, O.V. Khoruzhii, RTOP-code simulation of the radial distribution of heat release and plutonium isotope accumulation in high burnup oxide fuel, At. Energy 92 (4) (2002) 349-356. https://doi.org/10.1023/A:1016562228619
  18. B.H. Lee, Y.H. Koo, J.Y. Oh, J.S. Cheon, D.S. Sohn, Improvement of fuel performance code COSMOS with recent in-pile data for MOX and UO2 fuels, Nucl. Technol. 157 (1) (2007) 53-64. https://doi.org/10.13182/NT07-A3801
  19. A. Soba, A. Denis, Simulation with DIONISIO 1.0 of thermal and mechanical pellet-cladding interaction in nuclear fuel rods, J. Nucl. Mater. 374 (1-2) (2008) 32-43. https://doi.org/10.1016/j.jnucmat.2007.06.020
  20. A. Soba, A. Denis, L. Romero, E. Villarino, F. Sardella, A high burnup model developed for the DIONISIO code, J. Nucl. Mater. 433 (1-3) (2013) 160-166. https://doi.org/10.1016/j.jnucmat.2012.08.016
  21. A. Soba, A. Denis, DIONISIO 2.0: new version of the code for simulating a whole nuclear fuel rod under extended irradiation, Nucl. Eng. Des. 292 (2015) 213-221. https://doi.org/10.1016/j.nucengdes.2015.06.008
  22. E. Federici, A. Courcelle, P. Blanpain, H. Cognon, Helium production and behavior in nuclear oxide fuels during irradiation in LWR, in: in: Proceedings of the 2007 International LWR Fuel Performance Meeting, San Francisco, California, USA, 30 September - 3 October 2007, American Nuclear Society, 2007, pp. 664-673.
  23. P. Botazzoli, L. Luzzi, S. Bremier, A. Schubert, P. Van Uffelen, C.T. Walker, W. Haeck, W. Goll, Extension and validation of the TRANSURANUS burn-up model for helium production in high burn-up LWR fuels, J. Nucl. Mater. 419 (1-3) (2011) 329-338. https://doi.org/10.1016/j.jnucmat.2011.05.040
  24. D. Pizzocri, T. Barani, L. Luzzi, SCIANTIX: a new open source multi-scale code for fission gas behaviour modelling designed for nuclear fuel performance codes, J. Nucl. Mater. (2020) 152042.
  25. EERA-JPNM, INSPYRE: Investigations Supporting MOX fuel licensing in ESNII prototype Reactors [Online]. Available: http://www.eera-jpnm.eu/inspyre/, 2017.
  26. J. Leppanen, M. Pusa, T. Viitanen, V. Valtavirta, T. Kaltiaisenaho, The SERPENT Monte Carlo code: status, development and applications, in: in: SNA + MC 2013 - Joint International Conference on Supercomputing in Nuclear Applications + Monte Carlo, Paris, France, 27-31 October 2013, OECD/NEA, 2014.
  27. D. Pizzocri, T. Barani, L. Luzzi, Coupling of TRANSURANUS with the SCIANTIX fission gas behaviour module, Int. Work. "Towards Nucl. fuel Model. Var. React. types across Eur. (2019).
  28. P. Van Uffelen, A. Schubert, L. Luzzi, T. Barani, A. Magni, D. Pizzocri, M. Lainet, V. Marelle, B. Michel, B. Boer, S. Lemehov, A. Del Nevo, D7.2 - Incorporation and verification of models and properties in fuel performance codes, INSPYRE Deliverable D7.2 (2020). http://www.eera-jpnm.eu/inspyre/filesharer/documents/Deliverables%20&%20Milestones/Public%20deliverables.
  29. P. Talou, T. Kawano, P.G. Young, M.B. Chadwick, R.E. MacFarlane, Improved evaluations of neutron-induced reactions on americium isotopes, Nucl. Sci. Eng. 155 (1) (2007) 84-95. https://doi.org/10.13182/NSE07-A2646
  30. P. Botazzoli, Helium Production and Behaviour in LWR Oxide Nuclear Fuels, PhD Thesis, Politecnico di Milano, Italy, 2011.
  31. K. Tasaka, J. Katakura, H. Ihara, T. Yoshida, S. Iijima, R. Nakasima, T. Nakagawa, H. Takano, JNDC Nuclear Data Library of Fission Products - Second Version, JAERI 1320, 1990.
  32. S. Pearlstein, Analysis of (n,2n) cross sections for medium and heavy mass nuclei, Nucl. Sci. Eng. 23 (3) (1965) 238-250. https://doi.org/10.13182/NSE65-A19557
  33. J. Frehaut, A. Bertin, R. Bois, Measurement of the 235U(n,2n) cross section between threshold and 13 MeV, Nucl. Sci. Eng. 74 (1) (1980) 29-33. https://doi.org/10.13182/NSE80-A18943
  34. H. Ait Abderrahim, P. Baeten, D. De Bruyn, R. Fernandez, MYRRHA - a multipurpose fast spectrum research reactor, Energy Convers. Manag. 63 (2012) 4-10. https://doi.org/10.1016/j.enconman.2012.02.025
  35. M. Pusa, Numerical Methods for Nuclear Fuel Burnup Calculations, 2013.
  36. V. Sobolev, Database of thermophysical properties of liquid metal coolants for GEN-IV, SCK⦁ CEN Tech. Report SCKCEN-BLG-1069 16 (12) (2010) 3496-3502.
  37. S.M. Bowman, M.D. DeHart, C.V. Parks, Validation of SCALE-4 for burnup credit applications, Nucl. Technol. 110 (1) (1995) 53-70. https://doi.org/10.13182/NT95-A35096
  38. A. Alfonsi, C. Rabiti, A.S. Epiney, Y. Wang, J. Cogliati, Phisics toolkit: multi-reactor transmutation analysis utility - MRTAU, in: Int. Conf. PHYSOR 2012: Advances in Reactor Physics, American Nuclear Society, 2012, pp. 2181-2195.
  39. S. Hoglund, J. Kristensson, ESSANUF - European Supply of SAfe NUclear Fuel. International conference on WWER fuel performance, modelling and experimental support, Nesebar, Bulgaria, 16-23 September 2017, IAEA, 2017.
  40. C. Demaziere, V.H. Sanchez-Espinoza, B. Chanaron, Advanced Numerical Simulation and Modelling for Reactor Safety - Contributions from the CORTEX, HPMC, McSAFE and NURESAFE projects. 9th European Commission Conferences on EURATOM Research and Training in Safety of Reactor Systems and Radioactive Waste Management (FISA 2019 - Euradwaste' 19), Pitesti, Romania, 4-7 June 2019, Euratom, 2019.
  41. M. Herman, A. Trkov, "ENDF-6 formats manual: data formats and procedures for the evaluated nuclear data file ENDF", B-VI ENDF/BVII (Report BNL-90365-2009 Rev.1), Natl. Nucl. Data Center (2009). https://www.oecd-nea.org/dbdata/data/manual-endf/endf102.pdf.

Cited by

  1. Extension and application of the TRANSURANUS code to the normal operating conditions of the MYRRHA reactor vol.386, 2021, https://doi.org/10.1016/j.nucengdes.2021.111581