DOI QR코드

DOI QR Code

Dissolution behavior of SrO into molten LiCl for heat reduction in used nuclear fuel

  • Kang, Dokyu (Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology) ;
  • Amphlett, James T.M. (Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology) ;
  • Choi, Eun-Young (Korea Atomic Energy Research Institute) ;
  • Bae, Sang-Eun (Korea Atomic Energy Research Institute) ;
  • Choi, Sungyeol (Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology)
  • 투고 : 2020.08.03
  • 심사 : 2020.11.20
  • 발행 : 2021.05.25

초록

This study reports on the dissolution behavior of SrO in LiCl at varying SrO concentrations from low concentrations to excess. The amount of SrO dissolved in the molten salt and the species present upon cooling were determined. The thermal behavior of LiCl containing various concentrations of SrO was investigated. The experimental results were compared with results from the simulated results using the HSC Chemistry software package. Although the reaction of SrO with LiCl in the standard state at 650 ℃ has a slightly positive Gibbs free energy, SrO was found to be highly soluble in LiCl. Experimentally determined SrO concentrations were found to be considerably higher than those present in used nuclear fuel (<2 g/kg). As Sr-90 is one of the most important heat-generating nuclides in used nuclear fuel, this finding will be impactful in the development of fast, simple, and proliferation-resistant heat reduction processes for used nuclear fuel without the need for separating nuclear materials. Heat reduction is important as it decreases both the volume necessary for final disposal and the worker handling risk.

키워드

과제정보

This work was supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (The grant number: NRF-2016M2B2B1945249).

참고문헌

  1. S. Choi, W. Il Ko, Dynamic assessments on high-level waste and low- and intermediate-level waste generation from open and closed nuclear fuel cycles in Republic of Korea, J. Nucl. Sci. Technol. 51 (2014) 1141-1153, https://doi.org/10.1080/00223131.2014.905804.
  2. S. Choi, H.O. Nam, W. Il Ko, Environmental life cycle risk modeling of nuclear waste recycling systems, Energy 112 (2016) 836-851, https://doi.org/10.1016/j.energy.2016.06.127.
  3. K. Ikonen, Thermal Analyses of Spent Nuclear Fuel Repository Thermal Analyses of Spent Nuclear Fuel Repository, 2003.
  4. H.S. Jung, S. Choi, I.S. Hwang, M.-J. Song, Environmental assessment of advanced partitioning, transmutation, and disposal based on long-term risk-informed regulation: PyroGreen, Prog. Nucl. Energy 58 (2012) 27-38, https://doi.org/10.1016/j.pnucene.2012.02.003.
  5. R. Gao, S. Choi, Y. Zhou, W. Il Ko, Performance modeling and analysis of spent nuclear fuel recycling, Int. J. Energy Res. 39 (2015) 1981-1993, https://doi.org/10.1002/er.3424.
  6. R.A. Wigeland, T.H. Bauer, T.H. Fanning, E.E. Morris, Separations and transmutation criteria to improve utilization of a geologic repository, Nucl. Technol. 154 (2006) 95-106, https://doi.org/10.13182/NT06-3.
  7. A.N. Williams, M. Pack, S. Phongikaroon, Separation of strontium and cesium from ternary and quaternary lithium chloride-potassium chloride salts via melt crystallization, Nucl. Eng. Technol. 47 (2015) 867-874, https://doi.org/10.1016/j.net.2015.08.006.
  8. E.J. Karell, R.D. Pierce, T.P. Mulcahey, Treatment OF oxide spent fuel using the lithium reduction process, Proc. Am. Nucl. Soc. Meet. 53 (1996) 1689-1699, https://doi.org/10.1017/CBO9781107415324.004.
  9. E.Y. Choi, S.M. Jeong, Electrochemical processing of spent nuclear fuels: an overview of oxide reduction in pyroprocessing technology, Prog. Nat. Sci. Mater. Int. 25 (2015) 572-582, https://doi.org/10.1016/j.pnsc.2015.11.001.
  10. S. Herrmann, S. Li, M. Simpson, Electrolytic reduction of spent light water reactor fuel bench-scale experiment results, J. Nucl. Sci. Technol. 44 (2007) 361-367, https://doi.org/10.1080/18811248.2007.9711295.
  11. W. Il Ko, H.H. Lee, S. Choi, S.-K. Kim, B.H. Park, H.J. Lee, I.T. Kim, H.S. Lee, Preliminary conceptual design and cost estimation for Korea advanced pyroprocessing facility plus (KAPF+), Nucl. Eng. Des. 277 (2014) 212-224, https://doi.org/10.1016/j.nucengdes.2014.06.033.
  12. V.L. Cherginets, T.P. Rebrova, V.A. Naumenko, On metal oxide solubilities in some molten alkali metal bromides at T = 973 K, J. Chem. Thermodyn. 74 (2014) 216-220, https://doi.org/10.1016/j.jct.2014.02.001.
  13. I.N.I. Solvents, Chapter 3 equilibria in "solid oxide-ionic melt" systems, compr, Chem. Kinet 41 (2005) 229-345, https://doi.org/10.1016/S0069-8040(05)80006-8.
  14. J. Jeon, J. Yeon, Y. Cho, I. Choi, W. Kim, Determination of oxide ion activity in molten LiCl using oxide ion electrode, Proc. Korean Nucl. Autumn Meet 2002 (2002).
  15. D.H. Kim, S.E. Bae, J.Y. Kim, T.H. Park, Y.J. Park, K. Song, Solubility measurement of Li2O in LiCl molten salt for electro-reduction process, Asian J. Chem. 25 (2013) 7055-7057, https://doi.org/10.14233/ajchem.2013.18.
  16. Y. Sakamura, Solubility of Li[sub 2]O in molten LiCleMCl[sub x] (M=Na, K, Cs, Ca, Sr, or Ba) binary systems, J. Electrochem. Soc. 157 (2010) E135, https://doi.org/10.1149/1.3456631.
  17. A.V. Volkovich, M.V. Solodkova, Z.V. Zhukova, M.V. Sigailov, D.P. Vent, Interaction of strontium oxide with Sr-Cl2-MCl melts, Russ. Metall. 2011 (2011) 122-126, https://doi.org/10.1134/S0036029511020157.
  18. S.M. Jeong, B.H. Park, J.M. Hur, C.S. Seo, H. Lee, Ki-Chan Song, An experimental study on an electrochemical reduction of an oxide mixture in the advanced spent-fuel conditioning process, Nucl. Eng. Technol. 42 (2010) 183-192, https://doi.org/10.5516/NET.2010.42.2.183.
  19. S.D. Herrmann, S.X. Li, M.F. Simpson, S. Phongikaroon, Electrolytic reduction of spent nuclear oxide fuel as part of an integral process to separate and recover actinides from fission products, Separ. Sci. Technol. 41 (2006) 1965-1983, https://doi.org/10.1080/01496390600745602.
  20. S.D. Herrmann, S.X. Li, Separation and recovery of uranium metal from spent light water reactor fuel via electrolytic reduction and electrorefining, Nucl. Technol. 171 (2010) 247-265, https://doi.org/10.13182/NT171-247.
  21. W. Park, E.Y. Choi, S.W. Kim, S.C. Jeon, Y.H. Cho, J.M. Hur, Electrolytic reduction of a simulated oxide spent fuel and the fates of representative elements in a Li2O-LiCl molten salt, J. Nucl. Mater. 477 (2016) 59-66, https://doi.org/10.1016/j.jnucmat.2016.04.058.
  22. H. Lee, G. Il Park, J.W. Lee, K.H. Kang, J.M. Hur, J.G. Kim, S. Paek, I.T. Kim, I.J. Cho, Current status of pyroprocessing development at KAERI, Sci. Technol. Nucl. Install. 2013 (2013), https://doi.org/10.1155/2013/343492.
  23. E.V. Nikolaeva, I.D. Zakiryanova, I.V. Korzun, A.L. Bovet, B.D. Antonov, Interaction between barium oxide and barium containing chloride melt, Zeitschrift Fur Naturforsch. - Sect. A J. Phys. Sci. 70 (2015) 325-331, https://doi.org/10.1515/zna-2014-0370.
  24. E.V. Nikolaeva, I.D. Zakiryanova, A.L. Bovet, I.V. Korzun, On barium oxide solubility in barium-containing chloride melts, Zeitschrift Fur Naturforsch. - Sect. A J. Phys. Sci. 71 (2016) 731-734, https://doi.org/10.1515/zna-2016-0163.
  25. H.S. Lee, G.H. Oh, Y.S. Lee, I.T. Kim, E.H. Kim, J.H. Lee, Concentrations of CsCl and SrCl2 from a simulated LiCl salt waste generated by pyroprocessing by using czochralski method, J. Nucl. Sci. Technol. 46 (2009) 392-397, https://doi.org/10.3327/jnst.46.392.
  26. J.-M. Hur, S.M. Jeong, H. Lee, Underpotential deposition of Li in a molten LiCleLi2O electrolyte for the electrochemical reduction of U from uranium oxides, Electrochem. Commun. 12 (2010) 706-709, https://doi.org/10.1016/j.elecom.2010.03.012.
  27. M.K. Jeon, S.-W. Kim, S.-K. Lee, E.-Y. Choi, Thermodynamic Calculations on the Chemical Behavior of SrO During Electrolytic Oxide Reduction, J. Nucl. Fuel Cycle Waste Technol. 18 (2020) 415-420. https://doi.org/10.7733/jnfcwt.2020.18.3.415

피인용 문헌

  1. Dissolution Behavior of Simulated Spent Nuclear Fuel in LiCl-KCl-UCl3 Molten Salt vol.2021, 2021, https://doi.org/10.1155/2021/9048775