DOI QR코드

DOI QR Code

Effects of 3D contraction on pebble flow uniformity and stagnation in pebble beds

  • Wu, Mengqi (Institute of Nuclear and New Energy Technology, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Key Laboratory of Advanced Reactor Engineering and Safety, Ministry of Education, Tsinghua University) ;
  • Gui, Nan (Institute of Nuclear and New Energy Technology, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Key Laboratory of Advanced Reactor Engineering and Safety, Ministry of Education, Tsinghua University) ;
  • Yang, Xingtuan (Institute of Nuclear and New Energy Technology, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Key Laboratory of Advanced Reactor Engineering and Safety, Ministry of Education, Tsinghua University) ;
  • Tu, Jiyuan (Institute of Nuclear and New Energy Technology, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Key Laboratory of Advanced Reactor Engineering and Safety, Ministry of Education, Tsinghua University) ;
  • Jiang, Shengyao (Institute of Nuclear and New Energy Technology, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Key Laboratory of Advanced Reactor Engineering and Safety, Ministry of Education, Tsinghua University)
  • 투고 : 2020.05.05
  • 심사 : 2020.10.31
  • 발행 : 2021.05.25

초록

Pebble flow characteristics can be significantly affected by the configuration of pebble bed, especially for HTGR pebble beds. How to achieve a desired uniform flow pattern without stagnation is the top priority for reactor design. Pebbles flows inside some specially designed pebble bed with arc-shaped contraction configurations at the bottom, including both concave-inward and convex-outward shapes are explored based on discrete element method. Flow characteristics including pebble retention, residence-time frequency density, flow uniformity as well as axial velocity are investigated. The results show that the traditionally designed pebble bed with cone-shape bottom is not the most preferred structure with respect to flow pattern for reactor design. By improving the contraction configuration, the flow performance can be significantly enhanced. The flow in the convex-shape configuration featured by uniformity, consistency and less stagnation, is much more desirable for pebble bed design. In contrast, when the shape is from convex-forward to concave-inward, the flow shows more nonuniformity and stagnation in the corner although the average cross-section axial velocity is the largest due to the dominant middle pebbles.

키워드

과제정보

The authors are grateful for the support of this research by the National Science and Technology Major Project (Grant No. 2011ZX06901-003), the National Natural Science Foundations of China (Grant No. 51576211), National High Technology Research and Development Program of China (863) (2014AA052701).

참고문헌

  1. J. M Ryskamp, E.A. Harvego, S.T. Khericha, E.J. Gorski, D.J. Harrell, New generation nuclear plant: high level functions and requirements, in: International Conference on Nuclear Engineering, 2004.
  2. International Atomic Energy Agency, Current Status and Future Development of Modular High-Temperature Gas Cooled Reactor Technology, IAEA-TEDOC-1198, Vienna, February 2001.
  3. S.A. Alameri, J.C. Kingm, A.K. Alkaabi, Y. Addad, Prismatic-core advanced high temperature reactor and thermal energy storage coupled system - a preliminary design, Nucl. Eng. Technol. 52 (2020) 248-257. https://doi.org/10.1016/j.net.2019.07.028
  4. S.Y. Jiang, J.Y. Tu, X.T. Yang, N. Gui, A review of pebble flow study for pebble bed high temperature gas-cooled reactor, Exp Computat. Multiphase Flow 1 (3) (2019) 159-176.
  5. M.A. Alzamly, M. Aziz, A.A. Badawi, H.A. Gabal, A.R.A. Gadallah, Burnup analysis for HTR-10 reactor core loaded with uranium and thorium oxide, Nucl. Eng. Technol 52 (2020) 674-680. https://doi.org/10.1016/j.net.2019.09.012
  6. R. Swart, R.T. Dobson, Thermal-hydraulic simulation and evaluation of a natural circulation thermosyphon loop for a reactor cavity cooling system of a high- temperature reactor, Nucl. Eng. Technol. 52 (2020) 271-278. https://doi.org/10.1016/j.net.2019.07.031
  7. X.M. Sun, Y.J. Dong, P.F. Hao, L. Shi, F. Li, Y.T. Feng, Three-dimensional numerical simulation of quasi-static pebble flow, Adv. Powder Technol. 28 (2017) 499-505. https://doi.org/10.1016/j.apt.2016.11.007
  8. G.J. Auwerda, J.L. Kloosterman, D. Lathouwers, T.H.J.J. van der Hagen, Effects of random pebble distribution on the multiplication factor in HTR pebble bed reactors, Ann. Nucl. Energy 37 (2010) 1056-1066. https://doi.org/10.1016/j.anucene.2010.04.008
  9. R. Balevicius, R. Kacianauskas, Z. Mroz, I. Sielamowicz, Analysis and DEM simulation of granular material flow patterns in hopper models of different shapes, Adv. Powder Technol. 22 (2011) 226-235. https://doi.org/10.1016/j.apt.2010.12.005
  10. X.L. Zhang, Z.F. Li, A new method for calculating curve equation of silo, China Powder Sci. Technol. 19 (2013) 84-86.
  11. S. Albaraki, S.J. Antony, How does internal angle of hoppers affect granular flow? Experimental studies using digital particle image velocimetry, Powder Technol 268 (2014) 253-260. https://doi.org/10.1016/j.powtec.2014.08.027
  12. K.O. Lee, R.P. Gardner, Prediction of pebble motion in pebble-bed reactors using Monte Carlo molecular dynamics simulation, Nucl. Sci. Eng. 174 (3) (2013) 264-285. https://doi.org/10.13182/NSE12-23
  13. N. Gui, X. Yang, J. Tu, S. Jiang, Effect of bed configuration on pebble flow uniformity and stagnation in the pebble bed reactor, Nucl. Eng. Des 270 (2014) 295-301. https://doi.org/10.1016/j.nucengdes.2013.12.055
  14. Y. Li, N. Gui, X. Yang, J. Tu, S. Jiang, Effect of wall structure on pebble stagnation behavior in pebble bed reactor, Ann. Nucl. Energy 80 (2015) 195-202. https://doi.org/10.1016/j.anucene.2015.02.011
  15. F. Al Falahi, G. Mueller, M. Al Dahhan, Pebble bed nuclear reactor structure study: a comparison of the experimental and calculated void fraction distribution, Prog. Nucl. Energy 106 (2018) 153-161. https://doi.org/10.1016/j.pnucene.2018.03.006
  16. T.S. Majmudar, M. Sperl, S. Luding, R.P. Behringer, Jamming transition in granular systems, Phys. Rev. Lett 98 (5) (2007), 058001. https://doi.org/10.1103/PhysRevLett.98.058001
  17. F. Vivanco, S. Rica, F. Melo, Dynamical arching in a two-dimensional granular flow, Granul. Matter 14 (5) (2012) 563-576. https://doi.org/10.1007/s10035-012-0359-7
  18. S.H. Kim, H.C. Kim, J.K. Kim, J.M. Noh, A study on evaluation of pebble flow velocity with modification of the kinematic model for pebble bed reactor, Ann. Nucl. Energy 55 (2013) 322-330. https://doi.org/10.1016/j.anucene.2012.11.035
  19. W. Zhang, K. Thompson, A. Reed, L. Beenken, Relationship between packing structure and porosity in fixed beds of equilateral cylindrical particles, Chem. Eng. Sci 61 (2006) 8060-8074. https://doi.org/10.1016/j.ces.2006.09.036
  20. J. Choi, A. Kudrolli, R.R. Rosales, M.Z. Bazant, Diffusion and mixing in gravity-driven dense granular flows, Phys. Rev. Lett. 92 (2004) 174301. https://doi.org/10.1103/PhysRevLett.92.174301
  21. H. Ahn, Z. Basaranoglu, M. Yilmaz, A. Bugutekin, M. Zafer Gul, Experimental investigation of granular flow through an orifice, Powder Technol 186 (1) (2008) 65-71. https://doi.org/10.1016/j.powtec.2007.11.001
  22. S.D. Liu, Z.Y. Zhou, R.P. Zou, D. Pinson, A.B. Yu, Flow characteristics and discharge rate of ellipsoidal particles in a flat bottom hopper, Powder Technol 253 (2014) 70-79. https://doi.org/10.1016/j.powtec.2013.11.001
  23. J. Wan, F. Wang, G. Yang, S. Zhang, M. Wang, P. Lin, The influence of orifice shape on the flow rate: a DEM and experimental research in 3D hopper granular flows, Powder Technol 335 (2018) 147-155. https://doi.org/10.1016/j.powtec.2018.03.041
  24. D. Choi, S. Park, J. Han, M.Y. Ahn, Y. Lee, Y.H. Park, S. Cho, D. Sohn, A DEM-CFD study of the effects of size distributions and packing fractions of pebbles on purge gas flow through pebble beds, Fusion Eng. Des. 143 (2019) 24-34. https://doi.org/10.1016/j.fusengdes.2019.03.068
  25. C.H. Rycroft, G.S. Grest, M.Z. Bazant, J. Landry, Analysis of granular flow in a pebble-bed nuclear reactor, Phys. Rev. E 74 (2006), 021306. https://doi.org/10.1103/PhysRevE.74.021306
  26. H. Suikkanen, V. Rintala, J. Hyvarinen, DEM in analyses of nuclear pebble bed reactors. International Conference on Discrete Element Methods, Springer Singapore, 2017.
  27. X.T. Yang, W.P. Hu, S.Y. Jiang, K.K.L. Wong, J.Y. Tu, Mechanism analysis of quasi-static dense pebble flow in pebble bed reactor using phenomenological approach, Nucl. Eng. Des. 250 (2012) 247-259. https://doi.org/10.1016/j.nucengdes.2012.06.011
  28. S.Y. Jiang, X.T. Yang, Z.W. Tang, W.J. Wang, J.Y. Tu, Z.Y. Liu, J. Li, Experimental and numerical validation of a two-region-designed pebble bed reactor with dynamic core, Nucl. Eng. Des. 246 (2012) 277-285. https://doi.org/10.1016/j.nucengdes.2012.02.005
  29. M. Wu, N. Gui, H. Wu, X. Yang, J. Tu, S. Jiang, Effects of density difference and loading ratio on pebble flow in a three-dimensional two-region-designed pebble bed, Ann. Nucl. Energy 133 (2019) 924-936. https://doi.org/10.1016/j.anucene.2019.07.032
  30. X. Jia, N. Gui, X. Yang, J. Tu, H. Jia, S. Jiang, Experimental study of flow field characteristics on bed configurations in the pebble bed reactor, Ann. Nucl. Energy 102 (2017) 1-10. https://doi.org/10.1016/j.anucene.2016.12.009
  31. P.A. Cundall, The Measurement and Analysis of Acceleration in Rock Slopes, Ph. D. Dissertation, University of London, imperial college of science and technology, 1971.
  32. R. Berger, C. Kloss, A. Kohlmeyer, Hybrid parallelization of the LIGGGHTS open-source DEM code, Powder Technol 278 (2015) 234-247. https://doi.org/10.1016/j.powtec.2015.03.019
  33. J. Horabik, M. Molenda, Parameters and contact models for DEM simulations of agricultural granular materials: a review, Biosyst. Eng. 147 (2016) 206-225. https://doi.org/10.1016/j.biosystemseng.2016.02.017
  34. R.B. Emery, Aeration apparatus converts bin from funnel-flow to mass-flow characteristics, J. Eng. Ind. 95 (1) (1973) 37. https://doi.org/10.1115/1.3438141
  35. T.V. Nguyen, C.E. Brennen, R.H. Sabersky, Funnel flow in hoppers, J. Appl. Mech. 47 (4) (1980) 729. https://doi.org/10.1115/1.3153782
  36. G.E. Mueller, A simple method for determining sphere packed bed porosity, Powder Technol 229 (2012) 90-96. https://doi.org/10.1016/j.powtec.2012.06.013
  37. Toit Du, G. Charl, Analysing the porous structure of packed beds of spheres using a semi-analytical approach, Powder Technol 342 (2019) 475-485. https://doi.org/10.1016/j.powtec.2018.10.017
  38. Wen-qian Xu, Yi-qian Wang, Chaoqun Liu, Liutex similarity in turbulent boundary layer, Journal of Hydrodynamics 31 (6) (2019) 1259-1262. https://doi.org/10.1007/s42241-019-0094-1
  39. Yi-qian Wang, Chaoqun Liu, Liutex (vorex) cores in transitional boundary layer with spanwise-wall oscillation, Journal of Hydrodynamics 31 (6) (2019) 1178-1189. https://doi.org/10.1007/s42241-019-0092-3

피인용 문헌

  1. A fast region homogenization method based on experimental data for pebble flow vol.396, pp.no.pa, 2021, https://doi.org/10.1016/j.powtec.2021.11.009