DOI QR코드

DOI QR Code

Transient analysis of a subcritical reactor core with a MOX-Fuel using the birth-and-death model

  • 투고 : 2020.02.14
  • 심사 : 2020.11.25
  • 발행 : 2021.06.25

초록

The operation of the nuclear reactor requires accurate and fast methods and techniques for analysing its kinetics. These techniques become even more important when the MOX-fuel is used due to the lower value of delayed neutron fraction 𝛽 for 239Pu. Based on a Birth-and-Death process review, the mathematical model of thermal reactor core has been proposed different from existing ones. The analytical method for thermal point-reactor parameters evaluation is described within this work. The proposed method is applied for analysis of the unsteady transient processes taking place in a thermal reactor at its start-up or shutdown power change, as well as during small accidental power variation from the rated value. Theoretical determination of MASURCA reactor core reactivity through the analysis of experimental data on neutron time spectra was made.

키워드

과제정보

This work was made within the government research program 3.1.09 "Energetic systems, processes and technologies" funded by National Academy of Sciences of Belarus.

참고문헌

  1. S.u.I. Ahmad, N. Ahmad, Burnup-dependent core neutronics analysis and calculation of actinide and fission product inventories in discharged fuel of a material test research reactor, Prog. Nucl. Energy 48 (2006) 599-616, https://doi.org/10.1016/j.pnucene.2006.03.001.
  2. D. Aminev, A. Zhurkov, S. Polesskiy, V. Kulygin, D. Kozyrev, Comparative analysis of reliability prediction models for a distributed radio direction finding telecommunication system, in: Communications in Computer and Information Science, Springer Verlag, 2016, pp. 194-209, https://doi.org/10.1007/978-3-319-51917-3_18.
  3. A. Billebaud, R. Brissot, D. Heuer, M. Kerveno, C.L. Brun, E. Liatard, O. Meplan, E. Merle, F. Perdu, A. Billebaud, R. Brissot, D. Heuer, M. Kerveno, C.L. Brun, T. Muse, The MUSE-4 experiment : prompt reactivity and neutron spectrum measurements, Institut des Sciences Nucleaires, 2002. Technical Report.
  4. S.E. Chigrinov, H.I. Kiyavitskaya, I.G. Serafimovich, I.L. Rakhno, C.K. Rutkovskaia, Y. Fokov, A.M. Khilmanovich, B.A. Marstinkevich, V.V. Bournos, S.V. Korneev, S.E. Mazanik, A.V. Kulikovskaya, T.P. Korbut, N.K. Voropaj, I.V. Zhouk, M.K. Kievec, Experimental investigations on neutronics of the accelerator driven transmutation technologies at the subcritical facility 'YALINA', American Nuclear Society. La Grange Park (2002). https://inis.iaea.org/search/search.aspx?orig{_}q=RN:43009474. Technical Report.
  5. K.L. Chung, in: second ed.Markov Chains with Stationary Transition Probabilities, vol. 104, Springer, Berlin, 1967.
  6. A. Galperin, Utilization of light water reactors for plutonium incineration, Ann. Nucl. Energy 22 (1995) 507-511, https://doi.org/10.1016/0306-4549(95)95865-D.
  7. Y. Gohar, D.L. Smith, Nuclear Engineering Division, YALINA Facility a Subcritical Accelerator- Driven System (ADS) for Nuclear Energy Research Facility Description and an Overview of the Research Program (1997-2008), Argonne National Laboratory (ANL), Argonne, IL (United States), 2010, https://doi.org/10.2172/978573. Technical Report, http://www.osti.gov/servlets/purl/978573/.
  8. M. Halasz, M. Szieberth, Investigation of fuel cycles containing Generation IV reactors and VVER-1200 reactors, Kerntechnik 83 (2018a) 319-324, https://doi.org/10.3139/124.110906.
  9. M. Halasz, M. Szieberth, Markov chain models of nuclear transmutation: Part I a^V" Theory, Ann. Nucl. Energy 121 (2018b) 429-445, https://doi.org/10.1016/j.anucene.2018.07.010. https://linkinghub.elsevier.com/retrieve/pii/S0306454918303591.
  10. T.E. Harris, The Theory of Branching Processes, Springer-Verlag, 2012.
  11. S. Karlin, J. McGregor, Linear growth, birth and death processes, Journal of Mathematics and Mechanics 7 (1958) 643-662. http://www.jstor.org/stable/24900526.
  12. D.G. Kendall, On the generalized birth-and-death process, Ann. Math. Stat. 19 (1948) 1-15, https://doi.org/10.1214/aoms/1177730285. http://projecteuclid.org/euclid.aoms/1177730285.
  13. T. Korbut, E. Rudak, A. Petrovskiy, Statistical description for the decay of an ensemble of emitter nuclei in the context of a sub-Poisson distribution, Bull. Russ. Acad. Sci. Phys. 82 (2018) 1308-1314, https://doi.org/10.3103/S1062873818100155.
  14. T.N. Korbut, A.V. Kuz'min, E.A. Rudak, A thermal nuclear reactor as an analog of ADS systems with internal sources of neutrons, Bull. Russ. Acad. Sci. Phys. 79 (2015) 461-469, https://doi.org/10.3103/S1062873815040206.
  15. T.N. Korbut, A.V. Kuz'min, E.A. Rudak, Analytical calculation methods for the specific masses of 235U and 239Pu for a WWER-1200 reactor, Nuclear Energy and Technology 8 (2017) 113-117, https://doi.org/10.1134/S2079562917020130.
  16. T.N. Korbut, E.A. Rudak, O.A. Yachnik, Birth-death model adaptation for description of time evolution of the neutron + subcritical multiplying medium system, in: LXIV International Conference A«NUCLEUS 2014A» : Book of Abstracts, Minsk, 2014, p. 256. http://elib.bsu.by/bitstream/123456789/230413/1/256.pdf.
  17. M. Kravchenko, B&D Analysis for MUSE-4 1, 2020, https://doi.org/10.17632/JY4SPNJDFF.1.
  18. M. Kravchenko, E. Rudak, T. Korbut, A. Kuzmin, A. Petrovski, The functional form of nuclei decay in a thermal point-reactor within the particles' birth and death model, EPJ Web Conf. 201 (2019), 08004, https://doi.org/10.1051/epjconf/201920108004.
  19. M.O. Kravchenko, T.N. Korbut, E.A. Rudak, A.M. Piatrouski, Analytical description of thermal point-reactor parameters within particles birth and death model, J. Phys. Conf. (2018), https://doi.org/10.1088/1742-6596/1133/1/012023.
  20. S.G. Narendra, R.D. Nira, Stochastic Models in Biology, Elsevier, 1974, https://doi.org/10.1016/c2013-0-10736-2.
  21. N. Nuclear Science Committee, Benchmark on Computer Simulation of MASURCA Critical and Subcritical Experiments, NEA, 2006, https://doi.org/10.1787/oecd_papers-v6-art19-en. Technical Report.
  22. R. Otter, The multiplicative process, Ann. Math. Stat. 20 (1949), 226-224.
  23. A. Piatrouski, E. Rudak, T. Korbut, M. Kravchenko, Residual heat comparison for stationary campaigns of WWER-1000 and WWER-1200 reactors after preliminary storage in the spent fuel pool, J. Phys. Conf. (2018), https://doi.org/10.1088/1742-6596/1133/1/012009.
  24. M. Salam, C.J. Hah, Comparative study on nuclear characteristics of APR1400 between 100% MOX core and UO2 core, Ann. Nucl. Energy 119 (2018) 374-381, https://doi.org/10.1016/j.anucene.2018.05.008.