DOI QR코드

DOI QR Code

Preparation by the double extraction process with preliminary neutron irradiation of yttria or calcia stabilised cubic zirconium dioxide microspheres

  • 투고 : 2020.05.14
  • 심사 : 2020.06.29
  • 발행 : 2021.01.25

초록

A modern approach to nuclear energy involves reprocessing like transmutations of spent nuclear fuel products to reduce their radiotoxicity and time needed for their storage. For this purpose, they are immobilized in inert matrices made of zirconia and can be "burned" in fast neutron reactor or Accelerator Driven System. These matrices in spherical form can be obtained by sol-gel process. The paper presents a method of microspheres fabrication based on the combined Complex Sol-Gel Process and double extraction process consisting in the preparation of zirconium-ascorbate sol and simultaneous extraction of water and nitrates. The procedure allows obtaining gel microspheres with a diameter of 50 ㎛, which after heat treatment are processed into the final product. The synthesis of zirconia microspheres with Yttrium by internal gelation process is well known for over a decade now. However, the explanation and characterization of synthesis of such material by extraction of water process is rarely found. Parameters such as: pH, viscosity, shape, sphericity and crystal structure have been determined for synthesized products and semi-products. In addition, preliminary research consisting in irradiation of the obtained materials in fast and thermal neutron flux was carried out. The obtained results are presented and described in this work.

키워드

과제정보

This work is one part of the studies in the National Centre for Research and Development, project "Technology Supporting the Development of Safe Nuclear Power", (SP/J/4/143 321/11), part of the "Development of Techniques and Technologies Supporting the Management of Spent Nuclear Fuel and Radioactive Waste." The authors wish to acknowledge R. Laskowska for preliminary works on preparation of sol solutions and gelation to gels microspheres, Dr B. Sartowska and K. Lyczko for SEM and IR characterization, respectively.

참고문헌

  1. M.S. Rezaei, M. Alavi, S. Sahebdelfar, Y. Zi-Feng, Synthesis of pure tetragonal zirconium oxide with high surface area, J. Mater. Sci. 42 (2007) 1228-1237, https://doi.org/10.1007/s10853-006-0079-7.
  2. W.L. Gonga, W. Lutzeb, R.C. Ewing, Zirconia ceramics for excess weapons plutonium waste, J. Nucl. Mater. 277 (2000) 239-249, https://doi.org/10.1016/S0022-3115(99)00195-6.
  3. V.B. Raghavendra, S. Naik, M. Antony, G. Ramalingam, M. Rajamathi, S. Raghavan, et al., Amorphous, monoclinic, and tetragonal porous zirconia through a controlled self-sustained combustion route, J. Am. Ceram. Soc. 94 (2011) 1747-1755, https://doi.org/10.1111/j.1551-2916.2010.04334.x.
  4. M. Li, S. Zhang, L. Lv, M. Wang, W. Zhang, B. Pan, A thermally stable mesoporous ZrO2-CeO2-TiO2 visible light photocatalyst, Chem. Eng. J. 229 (2013) 118-125, https://doi.org/10.1016/j.cej.2013.05.106.
  5. V.S. Bergamaschi, F.M. Carvalho, C. Rodrigues, D.B. Fernandes, Preparation and evaluation of zirconia microspheres as inorganic exchanger in adsorption of copper and nickel ions and as catalyst in hydrogen production from bioethanol, Chem. Eng. J. 112 (2005) 153-158, https://doi.org/10.1016/j.cej.2005.04.016.
  6. H. Xu, H. Du, J. Liu, A. Guo, Preparation of sub-micron porous yttria-stabilized ceramics with ultra-low density by a TBA-based gel-casting method, Chem. Eng. J. 173 (2011) 251-257, https://doi.org/10.1016/j.cej.2011.07.061.
  7. S. Inan, Y. Altas, Preparation of zirconiumemanganese oxide/polyacrylonitrile (ZreMn oxide/PAN) composite spheres and the investigation of Sr(II) sorption by experimental design, Chem. Eng. J. 168 (2011) 1263-1271, https://doi.org/10.1016/j.cej.2011.02.038.
  8. T. Wang, Q. Yu, J. Kong, C. Wong, Synthesis and heat-insulating properties of yttria-stabilized ZrO2 hollow fibers derived from a ceiba template, Ceram. Int. 43 (2017) 9296-9302, https://doi.org/10.1016/j.ceramint.2017.04.090.
  9. R.H. Nielsen, G. Wilfing, Zirconium and zirconium compounds, in: Ullmann's Encyclopedia of Industrial Chemistry, 2010, https://doi.org/10.1002/14356007.a28_543.pub2.
  10. B. Valentin, H. Palancher, C. Yver, V. Garat, S. Massara, Heterogeneous Minor Actinide Transmutation on a UO2 blanket and on (U,Pu)O2 fuel in a SFR - preliminary design of pin and assembly, Proc. Int. Conf. GLOBAL (2009) Paper 9355. Paris, France, Sept. 6-11, 2009.
  11. P.G. Medvedev, S.M. Frank, T.P. O'Holleran, M. Meyer, Dual phase MgO-ZrO2 ceramics for use in LWR inert matrix fuel, J. Nucl. Mater. 342 (2005) 48-62, https://doi.org/10.1016/j.jnucmat.2005.03.017.
  12. C. Degueldre, Zirconia inert matrix for plutonium utilisation and minor actinides disposition in reactors, J. Alloys Compd. 444-445 (2007) 36-41, https://doi.org/10.1016/j.jallcom.2006.11.203.
  13. Q. Mistarihi, M.A. Umer, J.H. Kim, S.H. Hong, H.J. Ryu, Fabrication of ZrO2-based nanocomposites for transuranic element-burning inert matrix fuel, Nucl. Eng. Technol. 47 (2015) 617-623, https://doi.org/10.1016/j.net.2015.05.003.
  14. C. Degueldre, J.M. Paratte, Basic properties of a zirconia-based fuel material for light water reactors, Nucl. Tech. 123 (1998) 21-29, https://doi.org/10.13182/NT98-A2876.
  15. R.B. Heimann, T.T. Vandergraaf, Cubic zirconia as a candidate waste form for actinides: dissolution studies, J. Mater. Sci. Lett. 7 (1988) 583-586, https://doi.org/10.1007/BF01730301.
  16. E.A. Schneider, M.R. Deinert, S.T. Herring, K.B. Cady, Burnup simulations and spent fuel characteristics of ZrO2 based inert matrix fuels, J. Nucl. Mater. 361 (2007) 41-51, https://doi.org/10.1016/j.jnucmat.2006.10.021.
  17. M. Preda, H.H. Rehner, C. Nicolescu, The stabilization of zirconium dioxide in the ternary system CaO-TiO2-ZrO2, J. Eur. Ceram. Soc. 17 (1997) 891-896, https://doi.org/10.1016/S0955-2219(96)00168-9.
  18. A. Fernandez, R.J. Konings, J. Somers, Design and fabrication of specific ceramicemetallic fuels and targets, J. Nucl. Mater. 319 (2003) 44-50, https://doi.org/10.1016/S0022-3115(03)00132-6.
  19. W. Pyda, K. Haberko, CaO-containing tetragonal ZrO2 polycrystals (Ca-TZP), Ceram. Int. 13 (1987) 113-118, https://doi.org/10.1016/0272-8842(87)90048-4.
  20. Y.B. Khollam, A.S. Deshpande, A.J. Patil, H.S. Potdar, S.B. Deshpande, S.K. Date, Synthesis of yttria stabilized cubic zirconia (YSZ) powders by microwav-hydrothermal route, Mater. Chem. Phys. 71 (2001) 235-241, https://doi.org/10.1016/S0254-0584(01)00287-5.
  21. S. Zhao, J. Ma, X. Lin, X. Cheng, X. Zhao, S. Hao, Z. Li, C. Deng, B. Liu, Preparation of tetragonal zirconia microspheres as surrogate precursor for uranium nitride microspheres, Nucl. Eng. Des. 362 (2020) 110542, https://doi.org/10.1016/j.nucengdes.2020.110542.
  22. J.A. Wang, M.A. Valenzuela, J. Salmones, A. Vazquez, A. Garcia-Ruiz, X. Bokhimi, Comparative study of nanocrystalline zirconia prepared by precipitation and sol-gel methods, Catal. Today 68 (2001) 21-30, https://doi.org/10.1016/S0920-5861(01)00319-4.
  23. C. Schreinemachers, G. Leinders, G. Modolo, M. Verwerft, K. Binnemans, T. Cardinael, The conversion of ammonium uranate prepared via sol-gel synthesis into uranium oxides, Nucl. Eng. Technol. 52 (2020) 1013-1021, https://doi.org/10.1016/j.net.2019.11.004.
  24. H. Zhang, H. Lu, Y. Zhu, F. Li, R. Duan, M. Zhang, X. Wang, Preparations and characterizations of new mesoporous ZrO2 and Y2O3-stabilized ZrO2 spherical powders, Powder Technol. 227 (2012) 9-16, https://doi.org/10.1016/j.powtec.2012.02.007.
  25. J. Widoniak, S. Eiden-Assmann, G. Maret, Synthesis and characterization of monodisperse zirconia particles, Eur. J. Inorg. Chem. 15 (2005) 3149-3155, https://doi.org/10.1002/ejic.200401025.
  26. J. Widoniak, S. Eiden-Assmann, G. Maret, Synthesis and characterization of porous and non-porous monodisperse TiO2 and ZrO2 particles, Colloid. Surface. Physicochem. Eng. Aspect. 270-271 (2005) 329-334, https://doi.org/10.1021/cm0348949.
  27. H. Uchiyama, K. Takagi, H. Kozuka, Solvothermal synthesis of size-controlled ZrO2 microspheres via hydrolysis of alkoxides modified with acetylacetone, Colloid. Surface. Physicochem. Eng. Aspect. 403 (2012) 121-128, https://doi.org/10.1016/j.colsurfa.2012.03.065.
  28. A. Ghazanfari, W. Li, M.C. Leu, J.L. Watts, G.E. Hilmas, Additive manufacturing and mechanical characterization of high density fully stabilized zirconia, Ceram. Int. 43 (2017) 6082-6088, https://doi.org/10.1016/j.ceramint.2017.01.154.
  29. A. Deptula, W. Lada, T. Olczak, T. Zoltowski, A. Di Bartolomeo, Preparation of spherical powders of YBa2Cu3O7-x superconductor by sol-gel process, in: P. Vincencini (Ed.), High Temperature Superconductors, Elsevier Science Publisher B.V, 1991.
  30. A. Deptula, W. Lada, T. Olczak, R.Z. Le Geros, J.P. Le Geros, Preparation of calcium phosphate coatings by complex sol- gel process (CSGP), Bioceramics 9 (1996) 313-316.
  31. T. Smolinski, A. Deptula, T. Olczak, W. Lada, M. Brykala, P. Wojtowicz, D. Wawszczak, M. Rogowski, F. Zaza, Perovskite synthesis via complex sol-gel process to immobilize radioactive waste elements, J. Radioanal. Nucl. Chem. 299 (2014) 675-680, https://doi.org/10.1007/s10967-013-2835-x.
  32. M. Brykala, A. Deptula, M. Rogowski, W. Lada, T. Olczak, D. Wawszczak, T. Smolinski, P. Wojtowicz, G. Modolo, Synthesis of microspheres of triuranium octaoxide by simultaneous water and nitrate extraction from ascorbateuranyl sols, J. Radioanal. Nucl. Chem. 299 (2014) 651-655, https://doi.org/10.1007/s10967-013-2763-9.
  33. M. Brykala, M. Rogowski, Preparation of microspheres of carbon black dispersion in uranyl-ascorbate gels as precursors for uranium carbide, Prog. Nucl. Energy 89 (2016) 132-139, https://doi.org/10.1016/j.pnucene.2016.02.015.
  34. M. Brykala, M. Rogowski, The Complex Sol-Gel Process for producing small ThO2 microspheres, J. Nucl. Mater. 473 (2016) 249-255, https://doi.org/10.1016/j.jnucmat.2016.03.004.
  35. M. Brykala, A. Deptula, M. Rogowski, W. Lada, Modification of ICHTJ sol gel process for preparation of medium sized ceramic spheres (Ø < 100 ㎛), Ceram. Int. 41 (2015) 13025-13033, https://doi.org/10.1016/j.ceramint.2015.07.002.
  36. CNEN - Comitato Nazionale Energia Nucleare, I procesii sol-gel per a la Produzione di Combustibili ceramici, (Proc. Int. Nucl. Symp. Turin) Rome (1968).
  37. IAEA, Sol-gel processes for ceramic nuclear fuels, in: Proceedings of a Panel Sponsored by IAEA, Vienna, 1968.
  38. IAEA, Sol-gel processes for fuel fabrication, in: Proceedings Panel, Organized by IAEA, Vienna, 1973.
  39. M. Szuta, S. Kilim, E. Strugalska-Gola, M. Bielewicz, N. Zamiatin, A. Shafronovskaia, S. Tyutyunnikov, Comparison of two fast neutron fluence measurement methods based on Np-237 fission-capture ratio measurement (spectral index) and a reverse dark current measurement in a planar silicon detector, Eur. Phys. J. Web Conf. 138 (10006) (2017), https://doi.org/10.1051/epjconf/201713810006.
  40. J. Frana, Program DEIMOS32 for gamma ray spectra evaluation, J. Radioanal. Nucl. Chem. 257 (2003) 583-587, https://doi.org/10.1023/A:1025448800782.