DOI QR코드

DOI QR Code

State-of-the-art progress of gaseous radiochemical method for detecting of ionizing radiation

  • Lebedev, S.G. (Institute for Nuclear Research RAS 60thOctober Anniversary) ;
  • Yants, V.E. (Institute for Nuclear Research RAS 60thOctober Anniversary)
  • Received : 2020.07.28
  • Accepted : 2021.01.27
  • Published : 2021.07.25

Abstract

The article provides a review of the research results obtained during of more than 20 years concerning using the gaseous radiochemical method (GRCM) for detecting of ionizing radiation. This method based on threshold nuclear reactions with production of radioactive noble gas which does not interact with the materials of gaseous tract. The applications of GRCM in the diagnostics of neutrinos, neutrons, charged particles, thermonuclear plasma thermometry, and the study of the structure and dynamics of astrophysical objects, position-sensitive dosimetry of neutron targets with accelerator driving, spatial distribution of the fast neutron flux density in a nuclear reactor allowing the transformation of longitudinal coordinate of neutron flux distribution into a temporal distribution of the radiochemical gas decay counting rate ("barcode" semblance) and measurement of bombarding particles spectra are described. Experimental testing of the described technologies was made on the neutron target driven with the linear proton accelerator of Institute for Nuclear Research of Russian Academy of Sciences (INR RAS).

Keywords

References

  1. D.N. Abdurashitov, E.A. Koptelov, S.G. Lebedev, V.E. Yants, A gaseous radiochemical neutron monitors, Instrum. Exp. Tech. 47 (2004) 294-299. https://doi.org/10.1023/B:INET.0000032894.46264.19
  2. E.A. Koptelov, S.G. Lebedev, V.E. Yants, Radiochemical method for monitoring of fast neutron flux, Patent of Russian Federation 2 (2006) 286-586.
  3. S.G. Lebedev, S.V. Akulinichev, A.S. Iljinov, V.E. Yants, A gaseous radiochemical method for registration of ionizing radiation and its possible applications in science and economy, Nucl. Instrum. Methods Phys. Res. A561 (2006) 90-99.
  4. S.G. Lebedev, V.E. Yants, Radiochemical detector of spatial distribution of neutron flux density in nuclear reactor, Nucl. Instrum. Methods Phys. Res. A916 (2019) 83-86.
  5. I.R. Barabanov, V.N. Gavrin, G.T. Zatsepin, Improving the accuracy of activation analysis using a low-background detector, Sov. Atom. Energy 37 (1974) 503-504.
  6. I.R. Barabanov, V.N. Gavrin, G.T. Zatsepin, I.V. Orekhov, E.A. Yanovich, Radiochemical detector of low-intensity fast neutrons, Sov. Atom. Energy 47 (1979) 856-857. https://doi.org/10.1007/BF01118205
  7. V.N. Gavrin, V.N. Kornaukhov, V.E. Yants, Fast Neutron Flux Measurement in the Low-Background Laboratory of GTNT, Preprint INR AN USSR. П-703, Moscow, 1991 (in Riussian).
  8. M. Cribier, B. Pichard, J.P. Soirat, M. Spiro, T. Stolarczyk, C. Tao, D. Vignaud, Radiochemical measurement of fast neutrons using a Ca(NO3)2 aqueous solution, Nucl. Instrum. Methods Phys. Res. A365 (1995) 533-541.
  9. M. Cribler, B. Pichard, J.P. Soirat, M. Spiro, T. Stolarczyk, C. Tao, R. Wink, The neutron induced background in GALLEX, Astropart. Phys. 4 (1995) 23-32. https://doi.org/10.1016/0927-6505(95)00025-C
  10. P. Anselmann, et al., GALLEX results from the first 30 solar neutrino runs, Phys. Lett. B327 (1994) 377-385. https://doi.org/10.1016/0370-2693(94)90744-7
  11. E.A. Koptelov, S.G. Lebedev, N.M. Sobolevsky, et al., Prospect for study of radiation damage at RADEX-15, radiation experiment facility, based on the beam stop of Moscow Meson Factory, J. Nucl. Mater. 233-237 (1996) 1552-1555. https://doi.org/10.1016/S0022-3115(96)00078-5
  12. E.A. Koptelov, S.G. Lebedev, V.A. Matveev, et al., Computer and experimental modeling of target performance in particle beams and fusion or fission environments, Nucl. Instrum. Methods A480 (2002) 137-155.
  13. E.A. Koptelov, S.G. Lebedev, N.M. Sobolevsky, et al., Radiation damage parameters for modeling of FRM irradiation conditions at the RADEX facility of INR RAS, J. Nucl. Mater. 307 (2002) 1042-1046. https://doi.org/10.1016/S0022-3115(02)01020-6
  14. A.V. Krasilnikov, V.N. Amosov, P. Van Belle, et al., Study of d-t neutron energy spectra at JET using natural diamond detector, Nucl. Instrum. Methods A476 (2002) 500-505.
  15. H. Brysk, Fusion neutron energies and spectra, Plasma Phys. 15 (1973) 611-615. https://doi.org/10.1088/0032-1028/15/7/001
  16. S.G. Lebedev, V.E. Yants, High-speed gas neutron detector for thermometry of thermonuclear plasma, Nucl. Instrum. Methods Phys. Res. A945 (2019), 162633.
  17. L.V. Kravchuk, INR proton Linac operation and applications, Nucl. Instrum. Methods Phys. Res. 562 (2006) 932-934. https://doi.org/10.1016/j.nima.2006.02.110
  18. C.R. Cowley, W.P. Bidelman, S. Hubrig, G. Mathys, D.J. Bord, On the possible presence of promethium in the spectra of HD 101065 (Przybylski's star) and HD 965, Astron. Astrophys. 419 (2004) 1087-1093. https://doi.org/10.1051/0004-6361:20035726
  19. O.K. Manuel, G. Hwaung, Solar abundances of the elements, Meteoritics 18 (1983) 209-222. https://doi.org/10.1111/j.1945-5100.1983.tb00822.x
  20. R.J. Murphy, R. Ramaty, B. Kozlovsky, Solar abundances from gamma-ray spectroscopy: comparisons with energetic particle, photospheric, and coronal abundances, AIP Conference Proceedings of American Institute of Physics 232 (1991) 439-444.
  21. R.C. Lin, S. Krucker, G.J. Hurford, D.M. Smith, H.S. Hudson, G.D. Holman, RHESSI observations of particle acceleration and energy release in an intense solar gamma-ray line flare, Astrophys. J. Lett. 595 (2003) L69-L75. https://doi.org/10.1086/378932
  22. T. Sako, K. Watanabe, Y. Muraki, Y. Matsubara, H. Tsujihara, M. Yamashita, Long-lived solar neutron emission in comparison with electron-produced radiation in the 2005 September 7 solar flare, Astrophys. J. Lett. 651 (1) (2006) L69-L77. https://doi.org/10.1086/509145
  23. P. Scott, N. Grevesse, M. Asplund, A.J. Sauval, K. Lind, Y. Takeda, W. Hayek, The elemental composition of the Sun-I. The intermediate mass elements Na to Ca, Astronomy & Astrophysics 573 (...) (2015) A25-A31. https://doi.org/10.1051/0004-6361/201424109
  24. N. Grevesse, P. Scott, M. Asplund, A.J. Sauval, The elemental composition of the Sun-III. The heavy elements Cu to Th, Astron. Astrophys. 573 (2015) A27-A33. https://doi.org/10.1051/0004-6361/201424111
  25. M.B. Kallenrode, Current views on impulsive and gradual solar energetic particle events, J. Phys. G 29 (2003) 965-971. https://doi.org/10.1088/0954-3899/29/5/316
  26. R. Ramaty, R.E. Lingenfelter, in: R.E. Williams, M. Livio (Eds.), Astrophysical Gamma-ray Emission Lines, Analysis of Emission Lines, Cambridge Univ. Press, Cambridge, 1995, p. 180.
  27. S.G. Lebedev, V.E. Yants, Radiochemical detector of fast neutron flux density, Patent of Russian Federation 2 (2016), 620 196.