DOI QR코드

DOI QR Code

Economic evaluation of thorium oxide production from monazite using alkaline fusion method

  • Udayakumar, Sanjith (School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia) ;
  • Baharun, Norlia (School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia) ;
  • Rezan, Sheikh Abdul (School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia) ;
  • Ismail, Aznan Fazli (Nuclear Technology Research Centre, Faculty of Science and Technology, Universiti Kebangsaan Malaysia) ;
  • Takip, Khaironie Mohamed (Material Technology Group, Industrial Technology Division, Malaysian Nuclear Agency)
  • Received : 2020.07.19
  • Accepted : 2021.01.27
  • Published : 2021.07.25

Abstract

Monazite is a phosphate mineral that contains thorium (Th) and rare earth elements. The Th concentration in monazite can be as high as 500 ppm, and it has the potential to be used as fuel in the nuclear power system. Therefore, this study aimed to conduct the techno-economic analysis (TEA) of Th extraction in the form of thorium oxide (ThO2) from monazite. Th can be extracted from monazite through an alkaline fusion method. The TEA of ThO2 production studied parameters, including raw materials, equipment costs, total plant direct and indirect costs, and direct fixed capital cost. These parameters were calculated for the production of 0.5, 1, and 10 ton ThO2 per batch. The TEA study revealed that the highest production cost was ascribed to installed equipment. Furthermore, the highest return on investment (ROI) of 21.92% was achieved for extraction of 1 ton/batch of ThO2, with a payback time of 4.56 years. With further increase in ThO2 production to 10 ton/batch, the ROI was decreased to 5.37%. This is mainly due to a significant increase in the total capital investment with increasing ThO2 production scale. The minimum unit production cost was achieved for 1 ton ThO2/batch equal to 335.79 $/Kg ThO2.

Keywords

Acknowledgement

This work is financially supported by the Fundamental Research Grant Scheme (FRGS) from Ministry of Higher Education (MOHE), Malaysia with the grant no of 203/PBAHAN/6071402. The authors also wish to thank the Universiti Sains Malaysia for supporting the project.

References

  1. A. Nuttin, D. Heuer, A. Billebaud, R. Brissot, C. Le Brun, E. Liatard, et al., Potential of thorium molten salt reactors detailed calculations and concept evolution with a view to large scale energy production, Prog. Nucl. Energy 46 (2005) 77-99. https://doi.org/10.1016/j.pnucene.2004.11.001
  2. M.K. Rowinski, T.J. White, J. Zhao, Small and medium sized reactors (SMR): a review of technology, Renew. Sustain. Energy Rev. 44 (2015) 643-656. https://doi.org/10.1016/j.rser.2015.01.006
  3. A.A. Galahom, Minimization of the fission product waste by using thorium based fuel instead of uranium dioxide, Nucl. Eng. Des. 314 (2017) 165-172. https://doi.org/10.1016/j.nucengdes.2017.01.024
  4. S.S. Drera, K.I. Bjork, J.F. Kelly, Thorium fuel production and results from beginning of life irradiation, Prog. Nucl. Energy 72 (2014) 5-10. https://doi.org/10.1016/j.pnucene.2013.08.008
  5. O. Ashraf, G.V.A. Rykhlevskii, G.V. Tikhomirov, K.D. Huff, Strategies for thorium fuel cycle transition in the SD-TMSR, Ann. Nucl. Energy 148 (2020) 107656. https://doi.org/10.1016/j.anucene.2020.107656
  6. O. Ashraf, G.V.A. Rykhlevskii, G.V. Tikhomirov, K.D. Huff, Whole core analysis of the single-fluid double-zone thorium molten salt reactor (SD-TMSR), Ann. Nucl. Energy 137 (2020) 107115. https://doi.org/10.1016/j.anucene.2019.107115
  7. A. Rykhlevskii, J.W. Bae, K.D. Huff, Modeling and simulation of online reprocessing in the thorium-fueled molten salt breeder reactor, Ann. Nucl. Energy 128 (2019) 366-379. https://doi.org/10.1016/j.anucene.2019.01.030
  8. T. Ault, S. Krahn, A. Croff, Thorium fuel cycle research and literature: trends and insights from eight decades of diverse projects and evolving priorities, Ann. Nucl. Energy 110 (2017) 726-738. https://doi.org/10.1016/j.anucene.2017.06.026
  9. S. David, A. Billebaud, M.E. Brandan, R. Brissot, A. Giorni, D. Heuer, J.M. Loiseaux, O. Mfiplan, H. Nifenecker, J.B. Viano, J.P. Schapira, Fast subcritical hybrid reactors for energy production: evolution of physical parameters and induced radiotoxicities, Nucl. Instrum. Methods A. 443 (2000) 510-530. https://doi.org/10.1016/S0168-9002(99)01163-8
  10. S. Udayakumar, A. Fauzi, S. Abdul Rezan, T.A.R. Putra, C.G. Anderson, Chemical and mineralogical characterization of Malaysian monazite concentrate, Mining Metall. Explor. 37 (2020) 415-431. https://doi.org/10.1007/s42461-019-00173-w
  11. P.R. Hania, F.C. Klaassen, Thorium oxide fuel, in: T.R. Allen, R.E. Stoller, S. Yamanaka (Eds.), Comprehensive Nuclear Materials, Elsevier Ltd., 2012, p. 588, 106.
  12. I. Pioro, R. Duffey, Current and future nuclear power reactors and plants, in: T.M. Letcher (Ed.), Managing Global Warming: an Interface of Technology and Human Issues, Academic Press, 2019, pp. 117-197.
  13. U.E. Humphrey, M.U. Khandakera, Viability of thorium-based nuclear fuel cycle for the next generation nuclear reactor: issues and prospects, Renew. Sustain. Energy Rev. 97 (2018) 259-275. https://doi.org/10.1016/j.rser.2018.08.019
  14. C.N.A.C.Z. Bahri, A.F. Ismail, A. Ab Majid, M.I.F.M. Ruf, W.M. Al-Areqi, Extraction and purification of thorium oxide (ThO2) from monazite mineral, Sains Malays. 47 (2018) 1873-1882. https://doi.org/10.17576/jsm-2018-4708-28
  15. A.H.J.M. Salehuddin, A.F. Ismail, C.N.A.C.Z. Bahri, E.S. Aziman, Economic analysis of thorium extraction from monazite, Nucl. Eng. Technol. 51 (2019) 631-640. https://doi.org/10.1016/j.net.2018.11.005
  16. A.H.J.M. Salehuddin, E.S. Aziman, C.N.A.C.Z. Bahri, M.A.R.A. Affendi, W.M.R. Idris, A.F. Ismail, Effectiveness study of thorium extraction from hydrochloric acid using di (2-ethylhexyl) phosphoric acid (D2-HPA), Sains Malays. 48 (2019) 419-424. https://doi.org/10.17576/jsm-2019-4802-20
  17. C.N.A.C.Z. Bahri, A.F. Ismail, A.A. Majid, Synthesis of thorium tetrafluoride (ThF4) by ammonium hydrogen difluoride (NH4HF2), Nucl. Eng. Technol. 51 (2019) 792-799. https://doi.org/10.1016/j.net.2018.12.023
  18. S. Peelman, Z.H. Sun, J. Sietsma, Y. Yang, Leaching of rare earth elements: review of past and present technologies, in: I.B. De Lima, W.L. Filho (Eds.), Rare Earths Industry, Elsevier, 2015, pp. 319-334.
  19. A. Kumari, R. Panda, M.K. Jha, J.R. Kumar, J.Y. Lee, Process development to recover rare earth metals from monazite mineral: a review, Miner. Eng. 79 (2015) 102-115. https://doi.org/10.1016/j.mineng.2015.05.003
  20. A. Kumari, R. Panda, M.K. Jha, J.Y. Lee, J.R. Kumar, V. Kumar, Thermal treatment for the separation of phosphate and recovery of rare earth metals (REMs) from Korean monazite, J. Ind. Eng. Chem. 21 (2015) 696-703. https://doi.org/10.1016/j.jiec.2014.03.039
  21. F. Sadri, A.M. Nazari, A. Ghahreman, A review on the cracking, baking and leaching processes of rare earth element concentrates, J. Rare Earths 35 (2017) 739-752. https://doi.org/10.1016/S1002-0721(17)60971-2
  22. F. Sadri, F. Rashchi, A. Amini, Hydrometallurgical digestion and leaching of Iranian monazite concentrate containing rare earth elements Th, Ce, La and Nd, Int. J. Miner. Process. 159 (2017) 7-15. https://doi.org/10.1016/j.minpro.2016.12.003
  23. Z. Zhu, Y. Pranolo, C.Y. Cheng, Separation of uranium and thorium from rare earths for rare earth production-A review, Miner. Eng. 77 (2015) 185-196. https://doi.org/10.1016/j.mineng.2015.03.012
  24. C.J. Kim, H.S. Yoon, K.W. Chung, J.Y. Lee, S.D. Kim, S.M. Shin, S.J. Lee, A.R. Joe, S.I. Lee, S.J. Yoo, Leaching kinetics of lanthanum in sulfuric acid from rare earth element (REE) slag, Hydrometallurgy 146 (2014) 133-137. https://doi.org/10.1016/j.hydromet.2014.04.003
  25. K. Stone, A. Bandara, G. Senanayake, S. Jayasekera, Processing of rare earth phosphate concentrates: a comparative study of pre-leaching with perchloric, hydrochloric, nitric and phosphoric acids and deportment of minor/major elements, Hydrometallurgy 163 (2016) 137-147. https://doi.org/10.1016/j.hydromet.2016.03.014
  26. Q. Zheng, X. Bian, W.Y. Wu, An environmental friendly Coal-Ca(OH)2-NaOH roasting decomposition strategy for Bayan Obo tailings, Metall. Res. Technol. 114 (2017) 201. https://doi.org/10.1051/metal/2017010
  27. S. Udayakumar, S.A. Rezan, A.F. Noor, T.A. Putra, I. Ibrahim, N. Baharun, The dephosphorization behaviour of Malaysian Monazite concentrates, AIP Conf. Proc. 2267 (2020) 20070.
  28. W. Kim, I. Bae, S. Chae, H. Shin, Mechanochemical decomposition of monazite to assist the extraction of rare earth elements, J. Alloys Compd. 486 (2009) 610-614. https://doi.org/10.1016/j.jallcom.2009.07.015
  29. X. Yanhui, L. Haijiao, M. Zhijun, C. Jianguo, Z. Wenyi, L. Liangcai, Decomposition of bastnasite and monazite mixed rare earth minerals calcined by alkali liquid, J. Rare Earths 30 (2012) 155-158. https://doi.org/10.1016/S1002-0721(12)60014-3
  30. L. Berry, J. Galvin, V. Agarwal, M. Safarzadeh, Alkali pug bake process for the decomposition of monazite concentrates, Miner. Eng. 109 (2017) 32-41. https://doi.org/10.1016/j.mineng.2017.02.007
  31. Y. Huang, T.A. Zhang, L. Jiang, D. Zhihe, T. Junhang, Decomposition of the mixed rare earth concentrate by microwave-assisted method, J. Rare Earths 34 (2016) 529-535. https://doi.org/10.1016/S1002-0721(16)60058-3
  32. C.K. Gupta, N. Krishnamurthy, Extractive Metallurgy of Rare Earths, CRC Press, New York, NY, 2005.
  33. L. Wang, X. Huang, Y. Yu, L. Zhao, C. Wang, Z. Feng, D. Cui, Z. Long, Towards cleaner production of rare earth elements from bastnaesite in China, J. Clean. Prod. 165 (2017) 231-242. https://doi.org/10.1016/j.jclepro.2017.07.107
  34. F. Habashi, Extractive metallurgy of rare earths, Can. Metall. Q. 52 (2013) 224-233. https://doi.org/10.1179/1879139513Y.0000000081
  35. J. Galvin, M.S. Safarzadeh, Decomposition of msonazite concentrate in potassium hydroxide solution, J. Environ. Chem. Eng. 6 (2018) 1353-1363. https://doi.org/10.1016/j.jece.2018.01.042
  36. S.N. Gebremariam, J.M. Marchetti, Economics of biodiesel production: review, Energy Convers. Manag. 168 (2018) 74-84. https://doi.org/10.1016/j.enconman.2018.05.002
  37. Intelligen, SuperPro Designer User's Guide, Intelligen, Inc., Scotch Plains, USA, 2016.
  38. G.D. Ulrich, P.T. Vasudevan, Chemical Engineering Process Design and Economics: a Practical Guide, Process Publishing, Durham, 2004.
  39. T. Amer, W. Abdella, G.A. Wahab, E. El-Sheikh, A suggested alternative procedure for processing of monazite mineral concentrate, Int. J. Miner. Process. 125 (2013) 106-111. https://doi.org/10.1016/j.minpro.2013.10.004
  40. D. Qi, Hydrometallurgy of Rare Earths: Extraction and Separation, Elsevier, 2018.
  41. F. Xie, T.A. Zhang, D. Dreisinger, F. Doyle, A critical review on solvent extraction of rare earths from aqueous solutions, Miner. Eng. 56 (2014) 10-28. https://doi.org/10.1016/j.mineng.2013.10.021
  42. M.S. Peters, K.D. Timmerhaus, R.E. West, Plant Design and Economics for Chemical Engineers, fifth ed., McGraw-Hill, 2003.
  43. R.G. Harrison, P. Podd, A.R. Rudge, D.P. Petrides, Bioseparations Science and Engineering, Oxford University Press, 2003.
  44. E.C. Achilleos, J.C. Calandranis, D.P. Petrides, Quantifying the impact of uncertainty parameters in the batch manufacturing of active pharmaceutical ingredients, Pharmaceut. Eng. 26 (2006) 1-6.
  45. E. Heinzle, A.P. Biwer, C.L. Cooney, Development of Sustainable Bioprocesses: Modelling and Assessment, Wiley, New Jersey, 2007.

Cited by

  1. Synthesis of Ti Powder from the Reduction of TiCl4 with Metal Hydrides in the H2 Atmosphere: Thermodynamic and Techno-Economic Analyses vol.9, pp.9, 2021, https://doi.org/10.3390/pr9091567