Acknowledgement
This work is financially supported by the Fundamental Research Grant Scheme (FRGS) from Ministry of Higher Education (MOHE), Malaysia with the grant no of 203/PBAHAN/6071402. The authors also wish to thank the Universiti Sains Malaysia for supporting the project.
References
- A. Nuttin, D. Heuer, A. Billebaud, R. Brissot, C. Le Brun, E. Liatard, et al., Potential of thorium molten salt reactors detailed calculations and concept evolution with a view to large scale energy production, Prog. Nucl. Energy 46 (2005) 77-99. https://doi.org/10.1016/j.pnucene.2004.11.001
- M.K. Rowinski, T.J. White, J. Zhao, Small and medium sized reactors (SMR): a review of technology, Renew. Sustain. Energy Rev. 44 (2015) 643-656. https://doi.org/10.1016/j.rser.2015.01.006
- A.A. Galahom, Minimization of the fission product waste by using thorium based fuel instead of uranium dioxide, Nucl. Eng. Des. 314 (2017) 165-172. https://doi.org/10.1016/j.nucengdes.2017.01.024
- S.S. Drera, K.I. Bjork, J.F. Kelly, Thorium fuel production and results from beginning of life irradiation, Prog. Nucl. Energy 72 (2014) 5-10. https://doi.org/10.1016/j.pnucene.2013.08.008
- O. Ashraf, G.V.A. Rykhlevskii, G.V. Tikhomirov, K.D. Huff, Strategies for thorium fuel cycle transition in the SD-TMSR, Ann. Nucl. Energy 148 (2020) 107656. https://doi.org/10.1016/j.anucene.2020.107656
- O. Ashraf, G.V.A. Rykhlevskii, G.V. Tikhomirov, K.D. Huff, Whole core analysis of the single-fluid double-zone thorium molten salt reactor (SD-TMSR), Ann. Nucl. Energy 137 (2020) 107115. https://doi.org/10.1016/j.anucene.2019.107115
- A. Rykhlevskii, J.W. Bae, K.D. Huff, Modeling and simulation of online reprocessing in the thorium-fueled molten salt breeder reactor, Ann. Nucl. Energy 128 (2019) 366-379. https://doi.org/10.1016/j.anucene.2019.01.030
- T. Ault, S. Krahn, A. Croff, Thorium fuel cycle research and literature: trends and insights from eight decades of diverse projects and evolving priorities, Ann. Nucl. Energy 110 (2017) 726-738. https://doi.org/10.1016/j.anucene.2017.06.026
- S. David, A. Billebaud, M.E. Brandan, R. Brissot, A. Giorni, D. Heuer, J.M. Loiseaux, O. Mfiplan, H. Nifenecker, J.B. Viano, J.P. Schapira, Fast subcritical hybrid reactors for energy production: evolution of physical parameters and induced radiotoxicities, Nucl. Instrum. Methods A. 443 (2000) 510-530. https://doi.org/10.1016/S0168-9002(99)01163-8
- S. Udayakumar, A. Fauzi, S. Abdul Rezan, T.A.R. Putra, C.G. Anderson, Chemical and mineralogical characterization of Malaysian monazite concentrate, Mining Metall. Explor. 37 (2020) 415-431. https://doi.org/10.1007/s42461-019-00173-w
- P.R. Hania, F.C. Klaassen, Thorium oxide fuel, in: T.R. Allen, R.E. Stoller, S. Yamanaka (Eds.), Comprehensive Nuclear Materials, Elsevier Ltd., 2012, p. 588, 106.
- I. Pioro, R. Duffey, Current and future nuclear power reactors and plants, in: T.M. Letcher (Ed.), Managing Global Warming: an Interface of Technology and Human Issues, Academic Press, 2019, pp. 117-197.
- U.E. Humphrey, M.U. Khandakera, Viability of thorium-based nuclear fuel cycle for the next generation nuclear reactor: issues and prospects, Renew. Sustain. Energy Rev. 97 (2018) 259-275. https://doi.org/10.1016/j.rser.2018.08.019
- C.N.A.C.Z. Bahri, A.F. Ismail, A. Ab Majid, M.I.F.M. Ruf, W.M. Al-Areqi, Extraction and purification of thorium oxide (ThO2) from monazite mineral, Sains Malays. 47 (2018) 1873-1882. https://doi.org/10.17576/jsm-2018-4708-28
- A.H.J.M. Salehuddin, A.F. Ismail, C.N.A.C.Z. Bahri, E.S. Aziman, Economic analysis of thorium extraction from monazite, Nucl. Eng. Technol. 51 (2019) 631-640. https://doi.org/10.1016/j.net.2018.11.005
- A.H.J.M. Salehuddin, E.S. Aziman, C.N.A.C.Z. Bahri, M.A.R.A. Affendi, W.M.R. Idris, A.F. Ismail, Effectiveness study of thorium extraction from hydrochloric acid using di (2-ethylhexyl) phosphoric acid (D2-HPA), Sains Malays. 48 (2019) 419-424. https://doi.org/10.17576/jsm-2019-4802-20
- C.N.A.C.Z. Bahri, A.F. Ismail, A.A. Majid, Synthesis of thorium tetrafluoride (ThF4) by ammonium hydrogen difluoride (NH4HF2), Nucl. Eng. Technol. 51 (2019) 792-799. https://doi.org/10.1016/j.net.2018.12.023
- S. Peelman, Z.H. Sun, J. Sietsma, Y. Yang, Leaching of rare earth elements: review of past and present technologies, in: I.B. De Lima, W.L. Filho (Eds.), Rare Earths Industry, Elsevier, 2015, pp. 319-334.
- A. Kumari, R. Panda, M.K. Jha, J.R. Kumar, J.Y. Lee, Process development to recover rare earth metals from monazite mineral: a review, Miner. Eng. 79 (2015) 102-115. https://doi.org/10.1016/j.mineng.2015.05.003
- A. Kumari, R. Panda, M.K. Jha, J.Y. Lee, J.R. Kumar, V. Kumar, Thermal treatment for the separation of phosphate and recovery of rare earth metals (REMs) from Korean monazite, J. Ind. Eng. Chem. 21 (2015) 696-703. https://doi.org/10.1016/j.jiec.2014.03.039
- F. Sadri, A.M. Nazari, A. Ghahreman, A review on the cracking, baking and leaching processes of rare earth element concentrates, J. Rare Earths 35 (2017) 739-752. https://doi.org/10.1016/S1002-0721(17)60971-2
- F. Sadri, F. Rashchi, A. Amini, Hydrometallurgical digestion and leaching of Iranian monazite concentrate containing rare earth elements Th, Ce, La and Nd, Int. J. Miner. Process. 159 (2017) 7-15. https://doi.org/10.1016/j.minpro.2016.12.003
- Z. Zhu, Y. Pranolo, C.Y. Cheng, Separation of uranium and thorium from rare earths for rare earth production-A review, Miner. Eng. 77 (2015) 185-196. https://doi.org/10.1016/j.mineng.2015.03.012
- C.J. Kim, H.S. Yoon, K.W. Chung, J.Y. Lee, S.D. Kim, S.M. Shin, S.J. Lee, A.R. Joe, S.I. Lee, S.J. Yoo, Leaching kinetics of lanthanum in sulfuric acid from rare earth element (REE) slag, Hydrometallurgy 146 (2014) 133-137. https://doi.org/10.1016/j.hydromet.2014.04.003
- K. Stone, A. Bandara, G. Senanayake, S. Jayasekera, Processing of rare earth phosphate concentrates: a comparative study of pre-leaching with perchloric, hydrochloric, nitric and phosphoric acids and deportment of minor/major elements, Hydrometallurgy 163 (2016) 137-147. https://doi.org/10.1016/j.hydromet.2016.03.014
- Q. Zheng, X. Bian, W.Y. Wu, An environmental friendly Coal-Ca(OH)2-NaOH roasting decomposition strategy for Bayan Obo tailings, Metall. Res. Technol. 114 (2017) 201. https://doi.org/10.1051/metal/2017010
- S. Udayakumar, S.A. Rezan, A.F. Noor, T.A. Putra, I. Ibrahim, N. Baharun, The dephosphorization behaviour of Malaysian Monazite concentrates, AIP Conf. Proc. 2267 (2020) 20070.
- W. Kim, I. Bae, S. Chae, H. Shin, Mechanochemical decomposition of monazite to assist the extraction of rare earth elements, J. Alloys Compd. 486 (2009) 610-614. https://doi.org/10.1016/j.jallcom.2009.07.015
- X. Yanhui, L. Haijiao, M. Zhijun, C. Jianguo, Z. Wenyi, L. Liangcai, Decomposition of bastnasite and monazite mixed rare earth minerals calcined by alkali liquid, J. Rare Earths 30 (2012) 155-158. https://doi.org/10.1016/S1002-0721(12)60014-3
- L. Berry, J. Galvin, V. Agarwal, M. Safarzadeh, Alkali pug bake process for the decomposition of monazite concentrates, Miner. Eng. 109 (2017) 32-41. https://doi.org/10.1016/j.mineng.2017.02.007
- Y. Huang, T.A. Zhang, L. Jiang, D. Zhihe, T. Junhang, Decomposition of the mixed rare earth concentrate by microwave-assisted method, J. Rare Earths 34 (2016) 529-535. https://doi.org/10.1016/S1002-0721(16)60058-3
- C.K. Gupta, N. Krishnamurthy, Extractive Metallurgy of Rare Earths, CRC Press, New York, NY, 2005.
- L. Wang, X. Huang, Y. Yu, L. Zhao, C. Wang, Z. Feng, D. Cui, Z. Long, Towards cleaner production of rare earth elements from bastnaesite in China, J. Clean. Prod. 165 (2017) 231-242. https://doi.org/10.1016/j.jclepro.2017.07.107
- F. Habashi, Extractive metallurgy of rare earths, Can. Metall. Q. 52 (2013) 224-233. https://doi.org/10.1179/1879139513Y.0000000081
- J. Galvin, M.S. Safarzadeh, Decomposition of msonazite concentrate in potassium hydroxide solution, J. Environ. Chem. Eng. 6 (2018) 1353-1363. https://doi.org/10.1016/j.jece.2018.01.042
- S.N. Gebremariam, J.M. Marchetti, Economics of biodiesel production: review, Energy Convers. Manag. 168 (2018) 74-84. https://doi.org/10.1016/j.enconman.2018.05.002
- Intelligen, SuperPro Designer User's Guide, Intelligen, Inc., Scotch Plains, USA, 2016.
- G.D. Ulrich, P.T. Vasudevan, Chemical Engineering Process Design and Economics: a Practical Guide, Process Publishing, Durham, 2004.
- T. Amer, W. Abdella, G.A. Wahab, E. El-Sheikh, A suggested alternative procedure for processing of monazite mineral concentrate, Int. J. Miner. Process. 125 (2013) 106-111. https://doi.org/10.1016/j.minpro.2013.10.004
- D. Qi, Hydrometallurgy of Rare Earths: Extraction and Separation, Elsevier, 2018.
- F. Xie, T.A. Zhang, D. Dreisinger, F. Doyle, A critical review on solvent extraction of rare earths from aqueous solutions, Miner. Eng. 56 (2014) 10-28. https://doi.org/10.1016/j.mineng.2013.10.021
- M.S. Peters, K.D. Timmerhaus, R.E. West, Plant Design and Economics for Chemical Engineers, fifth ed., McGraw-Hill, 2003.
- R.G. Harrison, P. Podd, A.R. Rudge, D.P. Petrides, Bioseparations Science and Engineering, Oxford University Press, 2003.
- E.C. Achilleos, J.C. Calandranis, D.P. Petrides, Quantifying the impact of uncertainty parameters in the batch manufacturing of active pharmaceutical ingredients, Pharmaceut. Eng. 26 (2006) 1-6.
- E. Heinzle, A.P. Biwer, C.L. Cooney, Development of Sustainable Bioprocesses: Modelling and Assessment, Wiley, New Jersey, 2007.
Cited by
- Synthesis of Ti Powder from the Reduction of TiCl4 with Metal Hydrides in the H2 Atmosphere: Thermodynamic and Techno-Economic Analyses vol.9, pp.9, 2021, https://doi.org/10.3390/pr9091567