DOI QR코드

DOI QR Code

Effect of electric field on primary dark pulses in SPADs for advanced radiation detection applications

  • Lim, Kyung Taek (Department of Nuclear & Quantum Engineering, Korea Advanced Institute of Science and Technology) ;
  • Kim, Hyoungtaek (Korea Atomic Energy Research Institute) ;
  • Kim, Jinhwan (Department of Nuclear & Quantum Engineering, Korea Advanced Institute of Science and Technology) ;
  • Cho, Gyuseong (Department of Nuclear & Quantum Engineering, Korea Advanced Institute of Science and Technology)
  • Received : 2020.03.09
  • Accepted : 2020.07.08
  • Published : 2021.02.25

Abstract

In this paper, the single-photon avalanche diodes (SPADs) featuring three different p-well implantation doses (∅p-well) of 5.0 × 1012, 4.0 × 1012, and 3.0 × 1012 atoms/cm2 under the identical device layouts were fabricated and characterized to evaluate the effects of field enhanced mechanisms on primary dark pulses due to the maximum electric field. From the I-V curves, the breakdown voltages were found as 23.2 V, 40.5 V, and 63.1 V with decreasing ∅p-well, respectively. By measuring DCRs as a function of temperature, we found a reduction of approximately 8% in the maximum electric field lead to a nearly 72% decrease in the DCR at Vex = 5 V and T = 25 ℃. Also, the activation energy increased from 0.43 eV to 0.50 eV, as decreasing the maximum electric field. Finally, we discuss the importance of electric field engineering in reducing the field-enhanced mechanisms contributing to the DCR in SPADs and the benefits on the SPADs related to different types of radiation detection applications.

Keywords

Acknowledgement

This work was supported by the Institute of Information & Communications Technology Planning & Evaluation (IITP) grant funded by the Korea government (MSIT) (2019-0-00831).

References

  1. D. Renker, E. Lorenz, Advances in solid state photon detectors, J. Instrum. 4 (2009) P04004. https://doi.org/10.1088/1748-0221/4/04/P04004
  2. F. Acerbi, A. Ferri, A. Gola, M. Cazzanelli, L. Pavesi, N. Zorzi, C. Piemonte, Characterization of single-photon time resolution: from single SPAD to silicon photomultiplier, IEEE Trans. Nucl. Sci. 61 (2014) 2678-2686. https://doi.org/10.1109/TNS.2014.2347131
  3. F. Acerbi, G. Paternoster, A. Gola, N. Zorzi, C. Piemonte, Silicon photo-multipliers and single-photon avalanche diodes with enhanced NIR detection efficiency at FBK, Nucl. Instrum. Methods Phys. Res. 912 (2018) 309-314. https://doi.org/10.1016/j.nima.2017.11.098
  4. P. Buzhan, A. Karakash, Y. Teverovskiy, Silicon Photomultiplier and CsI(Tl) scintillator in application to portable H*(10) dosimeter, Nucl. Instrum. Methods Phys. Res. 912 (2018) 245-247. https://doi.org/10.1016/j.nima.2017.11.067
  5. G. Erika, Silicon photomultipliers for high energy physics detectors, J. Instrum. 6 (2011) C10003. https://doi.org/10.1088/1748-0221/6/10/C10003
  6. S. Gundacker, F. Acerbi, E. Auffray, A. Ferri, A. Gola, M.V. Nemallapudi, G. Paternoster, C. Piemonte, P. Lecoq, State of the art timing in TOF-PET detectors with LuAG, GAGG and L(Y)SO scintillators of various sizes coupled to FBK-SiPMs, J. Instrum. 11 (2016) P08008. P08008. https://doi.org/10.1088/1748-0221/11/08/P08008
  7. R. Agishev, A. Comeron, J. Bach, A. Rodriguez, M. Sicard, J. Riu, S. Royo, Lidar with SiPM: some capabilities and limitations in real environment, Optic Laser. Technol. 49 (2013) 86-90. https://doi.org/10.1016/j.optlastec.2012.12.024
  8. G. Ambrosi, M. Ambrosio, C. Aramo, E. Bissaldi, A. Boiano, A. Bonavolonta, C. de Lisio, L. Di Venere, E. Fiandrini, N. Giglietto, F. Giordano, M. Ionica, V. Masone, R. Paoletti, V. Postolache, D. Simone, V. Vagelli, M. Valentino, Development of a SiPM based camera for Cherenkov telescope array, Nucl. Part.Phys. Proc. 291-293 (2017) 55-58. https://doi.org/10.1016/j.nuclphysbps.2017.06.013
  9. C. Barker, T. Zhu, L. Rolison, S. Kiff, K. Jordan, A. Enqvist, Pulse shape analysis and discrimination for silicon-photomultipliers in helium-4 gas scintillation neutron detector, EPJ Web Conf. 170 (2018), 07002.
  10. D.J. Herbert, V. Saveliev, N. Belcari, N.D. Ascenzo, A.D. Guerra, A. Golovin, First results of scintillator readout with silicon photomultiplier, IEEE Trans. Nucl. Sci. 53 (2006) 389-394. https://doi.org/10.1109/TNS.2006.869848
  11. M. Stipcevic, D. Wang, R. Ursin, Characterization of a commercially available large area, high detection efficiency single-photon avalanche diode, J. Lightwave Technol. 31 (2013) 3591-3596. https://doi.org/10.1109/JLT.2013.2286422
  12. G. Collazuol, M.G. Bisogni, S. Marcatili, C. Piemonte, A. Del Guerra, Studies of silicon photomultipliers at cryogenic temperatures, Nucl. Instrum. Methods Phys. Res. 628 (2011) 389-392. https://doi.org/10.1016/j.nima.2010.07.008
  13. R. Pagano, G. Valvo, D. Sanfilippo, S. Libertino, D. Corso, P.G. Fallica, S. Lombardo, Silicon photomultiplier device architecture with dark current improved to the ultimate physical limit, Appl. Phys. Lett. 102 (2013) 183502. https://doi.org/10.1063/1.4804192
  14. S.M. Sze, K. Ng, Physics of Semiconductor Devices, third ed., John Wiley & Sons, 2007.
  15. R.H. Haitz, Mechanisms contributing to the noise pulse rate of avalanche diodes, J. Appl. Phys. 36 (1965) 3123-3131. https://doi.org/10.1063/1.1702936
  16. P.A. Martin, B. Streetman, K. Hess, Electric field enhanced emission from non-Coulombic traps in semiconductors, J. Appl. Phys. 52 (1981) 7409-7415. https://doi.org/10.1063/1.328731
  17. R. McIntyre, Multiplication noise in uniform avalanche diodes, IEEE Trans. Electron. Dev. 13 (1966) 164-168. https://doi.org/10.1109/T-ED.1966.15651
  18. R. Pagano, S. Libertino, D. Corso, S. Lombardo, G. Valvo, D. Sanfilippo, G. Condorelli, M. Mazzillo, A. Piana, B. Carbone, Silicon photomultiplier: technology improvement and performance, J. Sys. Mea. 6 (2013) 124-136.
  19. R. Pagano, S. Libertino, D. Corso, S. Lombardo, G. Valvo, D. Sanfilippo, G. Condorelli, M. Mazzillo, A. Piana, B. Carbone, G. Fallica, Improvement of the diffusive component of dark current in SiPM pixels, Sensordevices (2012) 2012.
  20. S. Cova, A. Lacaita, G. Ripamonti, Trapping phenomena in avalanche photo-diodes on nanosecond scale, IEEE Electron. Device Lett. 12 (1991) 685-687. https://doi.org/10.1109/55.116955
  21. G.A.M. Hurkx, D.B.M. Klaassen, M.P.G. Knuvers, A new recombination model for device simulation including tunneling, IEEE Trans. Electron. Dev. 39 (1992) 331-338. https://doi.org/10.1109/16.121690
  22. W.J. Kindt, H.W.V. Zeijl, Modelling and fabrication of Geiger mode avalanche photodiodes, IEEE Trans. Nucl. Sci. 45 (1998) 715-719. https://doi.org/10.1109/23.682621
  23. K.T. Lim, H. Kim, M. Kim, Y. Kim, C. Lee, G. Cho, Photon-number resolving capability in SiPMs with electric field variation for radiation detection applications, Radiat. Phys. Chem. 155 (2019) 101-106. https://doi.org/10.1016/j.radphyschem.2018.05.015
  24. C. Piemonte, R. Battiston, M. Boscardin, G.F.D. Betta, A.D. Guerra, N. Dinu, A. Pozza, N. Zorzi, Characterization of the first prototypes of silicon photo-multiplier fabricated at ITC-irst, IEEE Trans. Nucl. Sci. 54 (2007) 236-244. https://doi.org/10.1109/TNS.2006.887115
  25. F. Acerbi, S. Gundacker, Understanding and simulating SiPMs, Nucl. Instrum. Methods Phys. Res. 926 (2019) 16-35. https://doi.org/10.1016/j.nima.2018.11.118
  26. V. Chmill, E. Garutti, R. Klanner, M. Nitschke, J. Schwandt, Study of the breakdown voltage of SiPMs, Nucl. Instrum. Methods Phys. Res. 845 (2017) 56-59. https://doi.org/10.1016/j.nima.2016.04.047
  27. C.Y. Chang, S.S. Chiu, L.P. Hsu, Temperature dependence of breakdown voltage in silicon abrupt p-n junctions, IEEE Trans. Electron. Dev. 18 (1971) 391-393. https://doi.org/10.1109/T-ED.1971.17210
  28. N. Serra, G. Giacomini, A. Piazza, C. Piemonte, A. Tarolli, N. Zorzi, Experimental and TCAD study of breakdown voltage temperature behavior in n+/p SiPMs, IEEE Trans. Nucl. Sci. 58 (2011) 1233-1240. https://doi.org/10.1109/TNS.2011.2123919
  29. X. Li, C. Lockhart, T.K. Lewellen, R.S. Miyaoka, Study of PET detector performance with varying SiPM parameters and readout schemes, IEEE Trans. Nucl. Sci. 58 (2011) 590-596. https://doi.org/10.1109/TNS.2011.2119378
  30. C. Piemonte, A. Gola, Overview on the main parameters and technology of modern Silicon Photomultipliers, Nucl. Instrum. Methods Phys. Res. 926 (2019) 2-15. https://doi.org/10.1016/j.nima.2018.11.119
  31. M. Ghioni, A. Gulinatti, I. Rech, F. Zappa, S. Cova, Progress in silicon single-photon avalanche diodes, IEEE J. Sel. Top. Quant. Electron. 13 (2007) 852-862. https://doi.org/10.1109/JSTQE.2007.902088
  32. M. Ghioni, A. Gulinatti, I. Rech, P. Maccagnani, S. Cova, Large-area Low-Jitter Silicon Single Photon Avalanche Diodes, SPIE, 2008.
  33. G.A.M. Hurkx, H.C.d. Graaff, W.J. Kloosterman, M.P.G. Knuvers, A new analytical diode model including tunneling and avalanche breakdown, IEEE Trans. Electron. Dev. 39 (1992) 2090-2098. https://doi.org/10.1109/16.155882
  34. A.N. Otte, T. Nguyen, J. Stansbury, Locating the avalanche structure and the origin of breakdown generating charge carriers in silicon photomultipliers by using the bias dependent breakdown probability, Nucl. Instrum. Methods Phys. Res. 916 (2019) 283-289. https://doi.org/10.1016/j.nima.2018.11.086
  35. A. Gola, F. Acerbi, M. Capasso, M. Marcante, A. Mazzi, G. Paternoster, C. Piemonte, V. Regazzoni, N. Zorzi, NUV-sensitive silicon photomultiplier technologies developed at fondazione bruno kessler, Sensors 19 (2019) 308. https://doi.org/10.3390/s19020308
  36. A.N. Otte, D. Garcia, T. Nguyen, D. Purushotham, Characterization of three high efficiency and blue sensitive silicon photomultipliers, Nucl. Instrum. Methods Phys. Res. 846 (2017) 106-125. https://doi.org/10.1016/j.nima.2016.09.053
  37. G. Zappal a, F. Acerbi, A. Ferri, A. Gola, G. Paternoster, V. Regazzoni, N. Zorzi, C. Piemonte, Study of the photo-detection efficiency of FBK High-Density silicon photomultipliers, J. Instrum. 11 (2016) P11010. https://doi.org/10.1088/1748-0221/11/11/P11010
  38. C. Piemonte, F. Acerbi, A. Ferri, A. Gola, G. Paternoster, V. Regazzoni, G. Zappala, N. Zorzi, Performance of NUV-HD silicon photomultiplier technology, IEEE Trans. Electron. Dev. 63 (2016) 1111-1116. https://doi.org/10.1109/TED.2016.2516641
  39. I. Ostrovskiy, F. Retiere, D. Auty, J. Dalmasson, T. Didberidze, R. DeVoe, G. Gratta, L. Huth, L. James, L. Lupin-Jimenez, N. Ohmart, A. Piepke, Characterization of silicon photomultipliers for nEXO, IEEE Trans. Nucl. Sci. 62 (2015) 1825-1836. https://doi.org/10.1109/TNS.2015.2453932

Cited by

  1. Magnetic Carbon Nanofiber Mats for Prospective Single Photon Avalanche Diode (SPAD) Sensing Applications vol.21, pp.23, 2021, https://doi.org/10.3390/s21237873