DOI QR코드

DOI QR Code

Mechanical and thermodynamic stability, structural, electronics and magnetic properties of new ternary thorium-phosphide silicides ThSixP1-x: First-principles investigation and prospects for clean nuclear energy applications

  • Siddique, Muhammad (Department of Physics, The University of Lahore, Raiwind Road Campus Lahore) ;
  • Iqbal, Azmat (Faculty of Engineering and Applied Sciences, Department of Physics, Riphah International University Islamabad) ;
  • Rahman, Amin Ur (Faculty of Engineering and Applied Sciences, Department of Physics, Riphah International University Islamabad) ;
  • Azam, Sikander (Faculty of Engineering and Applied Sciences, Department of Physics, Riphah International University Islamabad) ;
  • Zada, Zeshan (Materials Modelling Lab, Department of Physics, Islamia College University) ;
  • Talat, Nazia (Department of Computer Science Bahria University)
  • Received : 2020.04.27
  • Accepted : 2020.07.13
  • Published : 2021.02.25

Abstract

Thorium compounds have attracted immense scientific and technological attention with regard to both fundamental and practical implications, owing to unique chemical and physical properties like high melting point, high density and thermal conductivity. Hereby, we investigate the mechanical and thermodynamic stability and report on the structural, electronic and magnetic properties of new silicon-doped cubic ternary thorium phosphides ThSixP1-x (x = 0, 0.25, 0.5, 0.75 and 1). The first-principles density functional theory procedure was adopted within full-potential linearized augmented plane wave (FP-LAPW) method. The exchange and correlation potential terms were treated within Generalized-Gradient-Approximation functional modified by Perdew-Burke-Ernzerrhof parameterizations. The proposed compounds showed mechanical and thermodynamic stable structure and hence can be synthesized experimentally. The calculated lattice parameters, bulk modulus, total energy, density of states, electronic band structure and spin magnetic moments of the compounds revealed considerable correlation to the Si substitution for P and the relative Si/P doping concentration. The electronic and magnetic properties of the doped compounds rendered them non-magnetic but metallic in nature. The main orbital contribution to the Fermi level arises from the hybridization of Th(6d+5f) and (Si+P)3p states. Reported results may have potential implications with regard to both fundamental point of view and technological prospects such as fuel materials for clean nuclear energy.

Keywords

References

  1. A. Buschbeck, G.H. Chojnowski, J. Kotzler, R. Sonder, G. Thummes, Field-dependent phase transitions and magnetization of the type II- antiferromagnets TbP and TbSb, J. Magn. Magn Mater. 69 (1987) 171-182. https://doi.org/10.1016/0304-8853(87)90114-4
  2. L. Petit, R. Tyer, Z. Szotek, W.M. Temmerman, A. Svane, Rare earth monopnictides and monochalcogenides from first principles: towards an electronic phase diagram of strongly correlated materials, New J. Phys. 12 (2010) 113041. https://doi.org/10.1088/1367-2630/12/11/113041
  3. G. Pagare, S.S. Chouhan, P. Soni, S.P. Sanyal, M. Rajagopalan, First principles study of structural, electronic and elastic properties of lutetium monopnictides, Comput. Mater. Comp. Maters. Sci. 50 (2010) 538-544. https://doi.org/10.1016/j.commatsci.2010.09.016
  4. J.S. Olsen, L. Gerward, U. Benedict, H. Luo, O. Vogt, Crystal structure and the equation of state of thorium monophosphide for pressures up to 50 GPa, J. Appl. Cryst. 22 (1989) 61-63. https://doi.org/10.1107/S002188988801091X
  5. L. Gerward, et al., High. Temp. - High. Press. 20 (1988) 545.
  6. E. Zintl, C. Brauer, Z. Phys, Chem. Abt. B 20 (1933) 245-271.
  7. L. Gerward, J.S. Olsen, U. Benedict, S. Dabos, J.-P. Itie, O. Vogt, High. Temp. - High. Press. 20 (1988) 545-552.
  8. J. Staun Olsen, L. Gerward, U. Benedict, H. Luo, O. Vogt, High. Temp. - High. Press. 20 (1988) 553-564.
  9. L. Gerward, J.S. Olsen, U. Benedict, S. Dabos, O. Vogt, High Pres. Res. 1 (1989) 235-251. https://doi.org/10.1080/08957958908222854
  10. J.S. Olsen, L. Gerward, U. Benedict, S. Dabos, J.-P. Itie, O. Vogt, High Pres. Res. 1 (1989) 253-261. https://doi.org/10.1080/08957958908222855
  11. S. Dabos, C. Dufour, U. Benedict, J.-C. Spirlet, M. Pag'es, Phys. B 144 (1986) 79-83. https://doi.org/10.1016/0378-4363(86)90296-2
  12. S. Dabos-Seignon, U. Benedict, J.-C. Spirlet, M. Pag'es, J. Less Common Met. 153 (1989) 133-141. https://doi.org/10.1016/0022-5088(89)90539-0
  13. S. Dabos-Seignon, U. Benedict, S. Heathman, J.-C. Spirlet, M. Pag'es, J. Less Common Met. 160 (1990) 35-52. https://doi.org/10.1016/0022-5088(90)90106-T
  14. M. Gensini, E. Gering, S. Heathman, U. Benedict, J.C. Spirlet, High Pres. Res. 2 (1990) 347-359. https://doi.org/10.1080/08957959008203187
  15. P.K. Jha, S.P. Sanyal, Phys. Rev. B 46 (1992) 3664-3667. https://doi.org/10.1103/PhysRevB.46.3664
  16. V. Srivastava, S.P. Sanyal, J. Alloys Compd. 366 (2004) 15-20. https://doi.org/10.1016/S0925-8388(03)00692-3
  17. B.S. Arya, M. Aynyas, S.P. Sanyal, J. Nucl. Mater. 393 (2009) 381-386. https://doi.org/10.1016/j.jnucmat.2009.06.024
  18. B. Reihl, N. Martension, D.E. Eastman, O. Vogt, Phys. Rev. B 26 (1982) 1842. https://doi.org/10.1103/PhysRevB.26.1842
  19. J. Schoenes, P. Repond, F. Hulliger, D.B. Ghosh, S.K. De, J. Kunes, P.M. Oppeneer, Phys. Rev. B 68 (2003), 085102. https://doi.org/10.1103/PhysRevB.68.085102
  20. V. Kanchana, G. Vaitheeswaran, A. Svane, S. Heathman, L. Gerward, J.S. Olsen, Acta Cryst. B 70 (2014) 459-468. https://doi.org/10.1107/S2052520614010063
  21. M. Anayas, P.K. Jha, S.P. Sanyal, Indian J. Pure Appl. Phys. 43 (2005) 109-114.
  22. S. Amari, S. Mecabih, B. Abbar, B. Bouhafs, J. Nucl. Mater. 454 (2014) 186-191. https://doi.org/10.1016/j.jnucmat.2014.07.026
  23. K. Kholiya, B.R.K. Gupta, Phys. B Condens. Matter 387 (2007) 271-275. https://doi.org/10.1016/j.physb.2006.04.015
  24. S. Kumar, S. Auluck, Bull. Mater. Sci. 26 (2003) 165-168. https://doi.org/10.1007/BF02712807
  25. S. Kapoor, N. Yaduvanshi, S. Singh, Mol. Phys. 114 (2016) 3589, https://doi.org/10.1080/00268976.2016.1250964.
  26. L. Petit, A. Svane, W.M. Temmerman, Z. Szotek, Eur. Phys. J. B 25 (2002) 139-146. https://doi.org/10.1140/epjb/e20020016
  27. M. Siddique, A.U. Rahman, B.U. Haq, A. Iqbal, A. Ahmad, I. Ahmad, Comput. Condens. Matter. 13 (2017) 111. https://doi.org/10.1016/j.cocom.2017.10.003
  28. M. Siddique, A.U. Rahman, A. Iqbal, B.U. Haq, S. Azam, A. Nadeem, A. Qayyum, Int. J. Thermophys. 40 (2019) 104, https://doi.org/10.1007/s107652572-7.
  29. Aicha Bahnes, et al., J. Supercond. Nov. Magnetism (2018), https://doi.org/10.1007/s10948-018-4760-2.
  30. Horst Wedemeyer, Kernforschungszentrum Karlsruhe, Compounds of thorium withSiliconin, in: Th Thorium Supplement Volume C 8, (Springer-Verlag Berlin Heidelberg 1993)
  31. S. Yagoubi, et al., J. Alloys Compd. 546 (2013) 63-71. https://doi.org/10.1016/j.jallcom.2012.07.094
  32. I.R. Shein, A.L. Ivanovskii, J. Struct. Chem. 49 (2008) 348-370. https://doi.org/10.1007/s10947-008-0134-0
  33. M. Siddique, A.U. Rahman, A. Iqbal, S. Azam, Nucl. Eng. Technol. 51 (2019) 1373-1380. https://doi.org/10.1016/j.net.2019.03.003
  34. I.R. Shein, et al., J. Nucl. Mater. 353 (2006) 19-26. https://doi.org/10.1016/j.jnucmat.2006.02.075
  35. S. Aydin, A. Tatar, Y.O. Ciftci, A theoretical study for thorium monocarbide (ThC), J. Nucl. Mater. ISSN: 00223115 429 (2012) 55-69, https://doi.org/10.1016/j.jnucmat.2012.05.038.
  36. D. Perez Daroca, S. Jaroszewicz, A.M. Llois, H.O. Mosca, Phonon spectrum, mechanical and thermophysical properties of thorium carbide, J. Nucl. Mater. ISSN: 00223115 437 (2013) 135-138, https://doi.org/10.1016/j.jnucmat.2013.01.350.
  37. H. Venu, Mankad, P.K. Jha, Thermodynamic properties of nuclear material uranium carbide using density functional theory, J. Therm. Anal. Calorim. 124 (2016) 11-20. https://doi.org/10.1007/s10973-015-5106-y
  38. B.D. Sahoo, K.D. Joshi, S.C. Gupta, Prediction of new high pressure structural sequence in thorium carbide: a first principles study, J. Appl. Phys. 117 (2015) 185903, https://doi.org/10.1063/1.4920929.
  39. C. Yu, J. Lin, P. Huai, et al., Structural phase transition of ThC under high pressure, Sci. Rep. 7 (2017) 96, https://doi.org/10.1038/s41598-017-00226-4.
  40. Y. Guo, W. Qiu, X. Ke, et al., A new phase of ThC at high pressure predicted from a first principles study, Phys. Lett. A 379 (2015) 1607-1611, https://doi.org/10.1016/j.physleta.2015.03.037.
  41. J.T. White, A.W. Travis, J.T. Dunwoody, et al., Fabrication and thermophysical property characterization of UN/U3Si2 composite fuel forms, J. Nucl. Mater. 495 (2017) 463-474. https://doi.org/10.1016/j.jnucmat.2017.08.041
  42. K.A. Terrani, D. Wang, L.J. Ott, et al., The effect of fuel thermal conductivity on the behavior of LWR cores during loss-of-coolant accident, J. Nucl. Mater. 448 (2014) 512-519. https://doi.org/10.1016/j.jnucmat.2013.09.051
  43. D. Perez Daroca, A.M. Llois, H.O. Mosca, Computational study of protactinium incorporation effects in Th and Th compounds, Nucl. Eng. Technol. (2020), https://doi.org/10.1016/j.net.2020.03.017. In press.
  44. I.R. Shein, K.I. Snein, N.I. Medvedeva, A.L. Ivanovskii, Phys. Status Solidi 244 (2007) 3198. https://doi.org/10.1002/pssb.200743125
  45. Tashiema L. Wilson, et al., Adv. Appl. Ceram. 117 (2018) s76-s81, https://doi.org/10.1080/17436753.2018.1521607.
  46. U.E. Humphrey, M.U. Khandaker, Viability of thorium-based nuclear fuel cycle for the next generation nuclear reactor: issues and prospects, Renew. Sustain. Energy Rev. 97 (2018) 259. https://doi.org/10.1016/j.rser.2018.08.019
  47. P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luitz, WEIN2K, an augmented plane wave plus local orbitals program for calculating Crystal-Properties, in: K. Schwarz (Ed.), Properties, Techn, University Wein, Austria, 2001, 2001.
  48. P. Hohenberg, W. Kohn, Phys. Rev. B 136 (1964) 864.
  49. W. Khon, L.J. Sham, Phys. Rev. A 140 (1965) 1133.
  50. J.P. Perdew, K. Bruke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865. https://doi.org/10.1103/PhysRevLett.77.3865
  51. F.D. Murnaghan, Proc. Natl. Acad. Sci. U.S.A. 30 (1944) 244. https://doi.org/10.1073/pnas.30.9.244
  52. E.L. Jacobson, R.D. Freeman, A.G. Tharp, A.W. Searcy, J. Am. Chem. Soc. 78 (1956) 4850. https://doi.org/10.1021/ja01600a009
  53. H. Kleykamp, Thorium carbides, in: gmelin handbook of inorganic and organometallic chemistry, in: eighth ed.Thorium Supplement, C6, Springer, Berlin, 1992, pp. 115-132.
  54. L. Gerward, et al., J. Appl. Cryst. 18 (1985) 339. https://doi.org/10.1107/S0021889885010421
  55. J. Wang, Y. Zhou, Phys. Rev. B 69 (21) (2004) 214111. https://doi.org/10.1103/physrevb.69.214111
  56. Z. Zada, H. Ullah, R. Bibi, S. Zada, A. Mahmood, Electronic band profiles and magneto- electronic properties of ternary XCu2P2 (X = Ca, Sr) compounds: insight from ab initio calculations, Z. Naturforsch. 1 (2020).
  57. F.A. Kassan-Ogly, A.V. Korolev, V.V. Ustinov, Yu N. Zuev, V.E. Arkhipov, Phys. Metals Metall. 114 (2013) 1155. https://doi.org/10.1134/S0031918X13130024
  58. H.H. Hill, in: W.N. Miner (Ed.), Plutonium 1970 and Other Actinides, The metallurgical Society of the AIME, New York, 1970.
  59. R. Benz, A. Naoumidis, Thorium, compounds with nitrogen, gmelin handbook of inorganic chemistry, in: eighth ed.Thorium Supplement, C3, Springer, Berlin, 1987.
  60. L. Gerward, J.S. Olsen, U. Benedict, J.P. Itie, J.C. Spirlet, J. Appl. Cryst. 19 (1986) 308. https://doi.org/10.1107/S0021889886089318