References
- A. Buschbeck, G.H. Chojnowski, J. Kotzler, R. Sonder, G. Thummes, Field-dependent phase transitions and magnetization of the type II- antiferromagnets TbP and TbSb, J. Magn. Magn Mater. 69 (1987) 171-182. https://doi.org/10.1016/0304-8853(87)90114-4
- L. Petit, R. Tyer, Z. Szotek, W.M. Temmerman, A. Svane, Rare earth monopnictides and monochalcogenides from first principles: towards an electronic phase diagram of strongly correlated materials, New J. Phys. 12 (2010) 113041. https://doi.org/10.1088/1367-2630/12/11/113041
- G. Pagare, S.S. Chouhan, P. Soni, S.P. Sanyal, M. Rajagopalan, First principles study of structural, electronic and elastic properties of lutetium monopnictides, Comput. Mater. Comp. Maters. Sci. 50 (2010) 538-544. https://doi.org/10.1016/j.commatsci.2010.09.016
- J.S. Olsen, L. Gerward, U. Benedict, H. Luo, O. Vogt, Crystal structure and the equation of state of thorium monophosphide for pressures up to 50 GPa, J. Appl. Cryst. 22 (1989) 61-63. https://doi.org/10.1107/S002188988801091X
- L. Gerward, et al., High. Temp. - High. Press. 20 (1988) 545.
- E. Zintl, C. Brauer, Z. Phys, Chem. Abt. B 20 (1933) 245-271.
- L. Gerward, J.S. Olsen, U. Benedict, S. Dabos, J.-P. Itie, O. Vogt, High. Temp. - High. Press. 20 (1988) 545-552.
- J. Staun Olsen, L. Gerward, U. Benedict, H. Luo, O. Vogt, High. Temp. - High. Press. 20 (1988) 553-564.
- L. Gerward, J.S. Olsen, U. Benedict, S. Dabos, O. Vogt, High Pres. Res. 1 (1989) 235-251. https://doi.org/10.1080/08957958908222854
- J.S. Olsen, L. Gerward, U. Benedict, S. Dabos, J.-P. Itie, O. Vogt, High Pres. Res. 1 (1989) 253-261. https://doi.org/10.1080/08957958908222855
- S. Dabos, C. Dufour, U. Benedict, J.-C. Spirlet, M. Pag'es, Phys. B 144 (1986) 79-83. https://doi.org/10.1016/0378-4363(86)90296-2
- S. Dabos-Seignon, U. Benedict, J.-C. Spirlet, M. Pag'es, J. Less Common Met. 153 (1989) 133-141. https://doi.org/10.1016/0022-5088(89)90539-0
- S. Dabos-Seignon, U. Benedict, S. Heathman, J.-C. Spirlet, M. Pag'es, J. Less Common Met. 160 (1990) 35-52. https://doi.org/10.1016/0022-5088(90)90106-T
- M. Gensini, E. Gering, S. Heathman, U. Benedict, J.C. Spirlet, High Pres. Res. 2 (1990) 347-359. https://doi.org/10.1080/08957959008203187
- P.K. Jha, S.P. Sanyal, Phys. Rev. B 46 (1992) 3664-3667. https://doi.org/10.1103/PhysRevB.46.3664
- V. Srivastava, S.P. Sanyal, J. Alloys Compd. 366 (2004) 15-20. https://doi.org/10.1016/S0925-8388(03)00692-3
- B.S. Arya, M. Aynyas, S.P. Sanyal, J. Nucl. Mater. 393 (2009) 381-386. https://doi.org/10.1016/j.jnucmat.2009.06.024
- B. Reihl, N. Martension, D.E. Eastman, O. Vogt, Phys. Rev. B 26 (1982) 1842. https://doi.org/10.1103/PhysRevB.26.1842
- J. Schoenes, P. Repond, F. Hulliger, D.B. Ghosh, S.K. De, J. Kunes, P.M. Oppeneer, Phys. Rev. B 68 (2003), 085102. https://doi.org/10.1103/PhysRevB.68.085102
- V. Kanchana, G. Vaitheeswaran, A. Svane, S. Heathman, L. Gerward, J.S. Olsen, Acta Cryst. B 70 (2014) 459-468. https://doi.org/10.1107/S2052520614010063
- M. Anayas, P.K. Jha, S.P. Sanyal, Indian J. Pure Appl. Phys. 43 (2005) 109-114.
- S. Amari, S. Mecabih, B. Abbar, B. Bouhafs, J. Nucl. Mater. 454 (2014) 186-191. https://doi.org/10.1016/j.jnucmat.2014.07.026
- K. Kholiya, B.R.K. Gupta, Phys. B Condens. Matter 387 (2007) 271-275. https://doi.org/10.1016/j.physb.2006.04.015
- S. Kumar, S. Auluck, Bull. Mater. Sci. 26 (2003) 165-168. https://doi.org/10.1007/BF02712807
- S. Kapoor, N. Yaduvanshi, S. Singh, Mol. Phys. 114 (2016) 3589, https://doi.org/10.1080/00268976.2016.1250964.
- L. Petit, A. Svane, W.M. Temmerman, Z. Szotek, Eur. Phys. J. B 25 (2002) 139-146. https://doi.org/10.1140/epjb/e20020016
- M. Siddique, A.U. Rahman, B.U. Haq, A. Iqbal, A. Ahmad, I. Ahmad, Comput. Condens. Matter. 13 (2017) 111. https://doi.org/10.1016/j.cocom.2017.10.003
- M. Siddique, A.U. Rahman, A. Iqbal, B.U. Haq, S. Azam, A. Nadeem, A. Qayyum, Int. J. Thermophys. 40 (2019) 104, https://doi.org/10.1007/s107652572-7.
- Aicha Bahnes, et al., J. Supercond. Nov. Magnetism (2018), https://doi.org/10.1007/s10948-018-4760-2.
- Horst Wedemeyer, Kernforschungszentrum Karlsruhe, Compounds of thorium withSiliconin, in: Th Thorium Supplement Volume C 8, (Springer-Verlag Berlin Heidelberg 1993)
- S. Yagoubi, et al., J. Alloys Compd. 546 (2013) 63-71. https://doi.org/10.1016/j.jallcom.2012.07.094
- I.R. Shein, A.L. Ivanovskii, J. Struct. Chem. 49 (2008) 348-370. https://doi.org/10.1007/s10947-008-0134-0
- M. Siddique, A.U. Rahman, A. Iqbal, S. Azam, Nucl. Eng. Technol. 51 (2019) 1373-1380. https://doi.org/10.1016/j.net.2019.03.003
- I.R. Shein, et al., J. Nucl. Mater. 353 (2006) 19-26. https://doi.org/10.1016/j.jnucmat.2006.02.075
- S. Aydin, A. Tatar, Y.O. Ciftci, A theoretical study for thorium monocarbide (ThC), J. Nucl. Mater. ISSN: 00223115 429 (2012) 55-69, https://doi.org/10.1016/j.jnucmat.2012.05.038.
- D. Perez Daroca, S. Jaroszewicz, A.M. Llois, H.O. Mosca, Phonon spectrum, mechanical and thermophysical properties of thorium carbide, J. Nucl. Mater. ISSN: 00223115 437 (2013) 135-138, https://doi.org/10.1016/j.jnucmat.2013.01.350.
- H. Venu, Mankad, P.K. Jha, Thermodynamic properties of nuclear material uranium carbide using density functional theory, J. Therm. Anal. Calorim. 124 (2016) 11-20. https://doi.org/10.1007/s10973-015-5106-y
- B.D. Sahoo, K.D. Joshi, S.C. Gupta, Prediction of new high pressure structural sequence in thorium carbide: a first principles study, J. Appl. Phys. 117 (2015) 185903, https://doi.org/10.1063/1.4920929.
- C. Yu, J. Lin, P. Huai, et al., Structural phase transition of ThC under high pressure, Sci. Rep. 7 (2017) 96, https://doi.org/10.1038/s41598-017-00226-4.
- Y. Guo, W. Qiu, X. Ke, et al., A new phase of ThC at high pressure predicted from a first principles study, Phys. Lett. A 379 (2015) 1607-1611, https://doi.org/10.1016/j.physleta.2015.03.037.
- J.T. White, A.W. Travis, J.T. Dunwoody, et al., Fabrication and thermophysical property characterization of UN/U3Si2 composite fuel forms, J. Nucl. Mater. 495 (2017) 463-474. https://doi.org/10.1016/j.jnucmat.2017.08.041
- K.A. Terrani, D. Wang, L.J. Ott, et al., The effect of fuel thermal conductivity on the behavior of LWR cores during loss-of-coolant accident, J. Nucl. Mater. 448 (2014) 512-519. https://doi.org/10.1016/j.jnucmat.2013.09.051
- D. Perez Daroca, A.M. Llois, H.O. Mosca, Computational study of protactinium incorporation effects in Th and Th compounds, Nucl. Eng. Technol. (2020), https://doi.org/10.1016/j.net.2020.03.017. In press.
- I.R. Shein, K.I. Snein, N.I. Medvedeva, A.L. Ivanovskii, Phys. Status Solidi 244 (2007) 3198. https://doi.org/10.1002/pssb.200743125
- Tashiema L. Wilson, et al., Adv. Appl. Ceram. 117 (2018) s76-s81, https://doi.org/10.1080/17436753.2018.1521607.
- U.E. Humphrey, M.U. Khandaker, Viability of thorium-based nuclear fuel cycle for the next generation nuclear reactor: issues and prospects, Renew. Sustain. Energy Rev. 97 (2018) 259. https://doi.org/10.1016/j.rser.2018.08.019
- P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luitz, WEIN2K, an augmented plane wave plus local orbitals program for calculating Crystal-Properties, in: K. Schwarz (Ed.), Properties, Techn, University Wein, Austria, 2001, 2001.
- P. Hohenberg, W. Kohn, Phys. Rev. B 136 (1964) 864.
- W. Khon, L.J. Sham, Phys. Rev. A 140 (1965) 1133.
- J.P. Perdew, K. Bruke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865. https://doi.org/10.1103/PhysRevLett.77.3865
- F.D. Murnaghan, Proc. Natl. Acad. Sci. U.S.A. 30 (1944) 244. https://doi.org/10.1073/pnas.30.9.244
- E.L. Jacobson, R.D. Freeman, A.G. Tharp, A.W. Searcy, J. Am. Chem. Soc. 78 (1956) 4850. https://doi.org/10.1021/ja01600a009
- H. Kleykamp, Thorium carbides, in: gmelin handbook of inorganic and organometallic chemistry, in: eighth ed.Thorium Supplement, C6, Springer, Berlin, 1992, pp. 115-132.
- L. Gerward, et al., J. Appl. Cryst. 18 (1985) 339. https://doi.org/10.1107/S0021889885010421
- J. Wang, Y. Zhou, Phys. Rev. B 69 (21) (2004) 214111. https://doi.org/10.1103/physrevb.69.214111
- Z. Zada, H. Ullah, R. Bibi, S. Zada, A. Mahmood, Electronic band profiles and magneto- electronic properties of ternary XCu2P2 (X = Ca, Sr) compounds: insight from ab initio calculations, Z. Naturforsch. 1 (2020).
- F.A. Kassan-Ogly, A.V. Korolev, V.V. Ustinov, Yu N. Zuev, V.E. Arkhipov, Phys. Metals Metall. 114 (2013) 1155. https://doi.org/10.1134/S0031918X13130024
- H.H. Hill, in: W.N. Miner (Ed.), Plutonium 1970 and Other Actinides, The metallurgical Society of the AIME, New York, 1970.
- R. Benz, A. Naoumidis, Thorium, compounds with nitrogen, gmelin handbook of inorganic chemistry, in: eighth ed.Thorium Supplement, C3, Springer, Berlin, 1987.
- L. Gerward, J.S. Olsen, U. Benedict, J.P. Itie, J.C. Spirlet, J. Appl. Cryst. 19 (1986) 308. https://doi.org/10.1107/S0021889886089318