Acknowledgement
The authors would like to thank Mr. Vivek Bhasin, Director, Nuclear fuels Group, Bhabha Atomic Research Centre, for his valuable suggestions and useful discussion regarding this work.
References
- H. Shahbunder, A.A. Al Qaaod, E.A. Amin, S. El-Kameesy, Effects of Pu and MA uniform and nonuniform distributions on subcritical multiplication of TRIGA Mark II ADS reactor, Ann. Nucl. Energy 94 (2016) 332-337. https://doi.org/10.1016/j.anucene.2016.03.016
- G. Alonso, E. Martinez, J.R. Ramirez, H. Hernandez, Radiotoxicity implications and reduction strategies of minor actinide in a boiling water reactor, Ann. Nucl. Energy 99 (2017) 410-420. https://doi.org/10.1016/j.anucene.2016.09.047
- C. Degueldre, J. Paratte, Concepts for an inert matrix fuel, an overview, J. Nucl. Mater. 274 (1999) 1-6. https://doi.org/10.1016/S0022-3115(99)00060-4
- H. Kleykamp, Selection of materials as diluents for burning of plutonium fuels in nuclear reactors, J. Nucl. Mater. 275 (1999) 1-11. https://doi.org/10.1016/S0022-3115(99)00144-0
- V. Anastasov, M. Betti, F. Boisson, F. Depisch, F. Houlbreque, R. Jeffree, I. Khamis, S. Lattemann, J. Miquel, S. Nisan, Status of Minor Actinide Fuel Development, IAEA Nuclear energy series No, 2009. NF-T-4.6.
- F. Sokolov, H. Nawada, Viability of Inert Matrix Fuel in Reducing Plutonium Amounts in Reactors, International Atomic Energy Agency, 2006, p. 1.
- P. Raison, R. Haire, Structural investigation of the pseudo-ternary system AmO2eCm2O3eZrO2 as potential materials for transmutation, J. Nucl. Mater. 320 (2003) 31-35. https://doi.org/10.1016/S0022-3115(03)00165-X
- C. Degueldre, Zirconia inert matrix for plutonium utilisation and minor actinides disposition in reactors, J. Alloys Compd. 444 (2007) 36-41. https://doi.org/10.1016/j.jallcom.2006.11.203
- C. Nandi, D. Jain, V. Grover, K. Krishnan, J. Banerjee, A. Prakash, K. Khan, A. Tyagi, ZrO2-NdO1.5 system: investigations of phase relation and thermophysical properties, Mater. Des. 121 (2017) 101-108. https://doi.org/10.1016/j.matdes.2017.02.030
- C. Nandi, D. Jain, V. Grover, R. Dawar, S. Kaity, A. Prakash, A. Tyagi, Zr0.70[Y1-xNdx]0.30O1.85 as a potential candidate for inert matrix fuel: structural and thermophysical property investigations, J. Nucl. Mater. 510 (2018) 178-186. https://doi.org/10.1016/j.jnucmat.2018.08.008
- C. Nandi, V. Grover, P. Kulriya, A. Poswal, A. Prakash, K. Khan, D. Avasthi, A. Tyagi, Structural response of Nd-stabilized zirconia and its composite under extreme conditions of swift heavy ion irradiation, J. Nucl. Mater. 499 (2018) 216-224. https://doi.org/10.1016/j.jnucmat.2017.11.017
- M. Patel, V. Vijayakumar, S. Kailas, D. Avasthi, J. Pivin, A. Tyagi, Structural modifications in pyrochlores caused by ions in the electronic stopping regime, J. Nucl. Mater. 380 (2008) 93-98. https://doi.org/10.1016/j.jnucmat.2008.07.007
- G.R. Lumpkin, M. Pruneda, S. Rios, K.L. Smith, K. Trachenko, K.R. Whittle, N.J. Zaluzec, Nature of the chemical bond and prediction of radiation tolerance in pyrochlore and defect fluorite compounds, J. Solid State Chem. 180 (2007) 1512-1518. https://doi.org/10.1016/j.jssc.2007.01.028
- C. Nandi, D. Jain, V. Grover, R. Dawar, S. Kaity, A. Prakash, A. Tyagi, Zr0.70[Y1-xNdx]0.30O1.85 as a potential candidate for inert matrix fuel: structural and thermophysical property investigations, J. Nucl. Mater. 510 (2018) 178-186. https://doi.org/10.1016/j.jnucmat.2018.08.008
- Z.-G. Liu, J.-H. Ouyang, B.-H. Wang, Y. Zhou, J. Li, Preparation and thermophysical properties of NdxZr1-xO2-x/2 (x= 0.1, 0.2, 0.3, 0.4, 0.5) ceramics, J. Alloys Compd. 466 (2008) 39-44. https://doi.org/10.1016/j.jallcom.2007.11.147
- S. Lutique, R. Konings, V. Rondinella, J. Somers, T. Wiss, The thermal conductivity of Nd2Zr2O7 pyrochlore and the thermal behaviour of pyrochlorebased inert matrix fuel, J. Alloys Compd. 352 (2003) 1-5. https://doi.org/10.1016/S0925-8388(02)01113-1
- P. Medvedev, M. Lambregts, M. Meyer, Thermal conductivity and acid dissolution behavior of MgO-ZrO2 ceramics for use in LWR inert matrix fuel, J. Nucl. Mater. 349 (2006) 167-177. https://doi.org/10.1016/j.jnucmat.2005.10.009
- S. Miwa, M. Osaka, Oxidation and reduction behaviors of a prototypic MgO-PuO2-x inert matrix fuel, J. Nucl. Mater. 487 (2017) 1-4. https://doi.org/10.1016/j.jnucmat.2017.01.048
- S. Yates, K. McClellan, J. Nino, The effect of processing on the thermal diffusivity of MgO-Nd2Zr2O7 composites for inert matrix materials, J. Nucl. Mater. 393 (2009) 203-211. https://doi.org/10.1016/j.jnucmat.2009.06.006
- P. Medvedev, S. Frank, T. O'Holleran, M. Meyer, Dual phase MgO-ZrO2 ceramics for use in LWR inert matrix fuel, J. Nucl. Mater. 342 (1-3) (2005) 48-62. https://doi.org/10.1016/j.jnucmat.2005.03.017
- J. Jung, H. Runge, The compatibility of basalt and MgO with liquid sodium, Liquid metal engineering and technology. 3 v, in: Proceedings of the 3. International Conference Held in Oxford on 9-13 April, 1984.
- A. Nelson, M. Giachino, J. Nino, K. McClellan, Effect of composition on thermal conductivity of MgO-Nd2Zr2O7 composites for inert matrix materials, J. Nucl. Mater. 444 (2014) 385-392. https://doi.org/10.1016/j.jnucmat.2013.10.033
- E. Neeft, K. Bakker, R. Schram, R. Conrad, R. Konings, The EFTTRA-T3 irradiation experiment on inert matrix fuels, J. Nucl. Mater. 320 (2003) 106-116. https://doi.org/10.1016/S0022-3115(03)00176-4
- N. Chauvin, T. Albiol, R. Mazoyer, J. Noirot, D. Lespiaux, J. Dumas, C. Weinberg, J. Menard, J. Ottaviani, In-pile studies of inert matrices with emphasis on magnesia and magnesium aluminate spinel, J. Nucl. Mater. 274 (1999) 91-97. https://doi.org/10.1016/S0022-3115(99)00080-X
- G. Prasad, V. Sinha, P. Hegde, Development and fabrication of LEU plate fuel for modified core of APSARA reactor, BARC Newsletter 21 (2012).
- P. Dehaudt, A. Mocellin, G. Eminet, L. Caillot, G. Delette, M. Bauer, I. Viallard, Composite Fuel Behaviour under and after Irradiation, 1997. IAEA-TECDOC-970.
- N. Chauvin, T. Albiol, R. Mazoyer, J. Noirot, D. Lespiaux, J. Dumas, C. Weinberg, J. Menard, J. Ottaviani, In-pile studies of inert matrices with emphasis on magnesia and magnesium aluminate spinel, J. Nucl. Mater. 274 (1999) 91-97. https://doi.org/10.1016/S0022-3115(99)00080-X
- J. RodriguezeCarvajal, Program FullProf. 2k (Version 5.00), Laboratoire Leon Brillouin, France, 2011.
- R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallogr. A 32 (1976) 751-767. https://doi.org/10.1107/S0567739476001551
- T. Noguchi, M. Mizuno, Liquidus curve measurements in the ZrO2-MgO system with the solar furnace, B. Chem. Soc. Jap. 41 (1968) 1583-1587. https://doi.org/10.1246/bcsj.41.1583
- S. Serena, M.A. Sainz, A. Caballero, Experimental determination and thermodynamic calculation of the zirconia-calcia-magnesia system at 1600, 1700, and 1750C, J. Am. Ceram. Soc. 87 (2004) 2268-2274. https://doi.org/10.1111/j.1151-2916.2004.tb07503.x
- D. Yong, J. Zhanpeng, Optimization and calculation of the ZrO2-MgO system, Calphad 15 (1991) 59-68. https://doi.org/10.1016/0364-5916(91)90026-G
- H. Scott, Phase relations in the magnesia-yttria-zirconia system, J. Australas. Ceram. Soc. 17 (1981) 16-20.
- T. Nielsen, M. Leipold, Thermal expansion in air of ceramic oxides to 2200 ℃, J. Am. Ceram. Soc. 46 (1963) 381-387. https://doi.org/10.1111/j.1151-2916.1963.tb11756.x
- I. Suzuki, Thermal expansion of periclase and olivine, and their anharmonic properties, J. Phys. Earth 23 (2) (1975) 145-159. https://doi.org/10.4294/jpe1952.23.145
- L. Dubrovinsky, S. Saxena, Thermal expansion of periclase (MgO) and tungsten (W) to melting temperatures, Phys. Chem. Miner. 24 (8) (1997) 547-550. https://doi.org/10.1007/s002690050070
- G. Fiquet, P. Richet, G. Montagnac, High-temperature thermal expansion of lime, periclase, corundum and spinel, Phys. Chem. Miner. 27 (1999) 103-111. https://doi.org/10.1007/s002690050246
- R.R. Reeber, K. Goessel, K. Wang, Thermal expansion and molar volume of MgO, periclase, Eur. J. Mineral 7 (1995) 1039-1047. https://doi.org/10.1127/ejm/7/5/1039
- A. Rao, K. Narender, Studies on thermophysical properties of CaO and MgO by g-ray attenuation, J. Thermodyn. 2014 (2014) 123478.
- L. Cheng, B. Yan, R. Gao, X. Liu, Z. Yang, B. Li, Y. Zhong, P. Liu, Y. Wang, M. Chu, Densification behaviour of UO2/Mo core-shell composite pellets with a reduced coefficient of thermal expansion, Ceram. Int. 46 (2020) 4730-4736. https://doi.org/10.1016/j.ceramint.2019.10.204
- I. Barin, G. Platzki, Thermochemical Data of Pure Substances, Wiley Online Library, 1989.
- D.R. Stull, H. Prophet, JANAF Thermochemical Tables, National Standard Reference Data System, 1971.
- J. Luo, R. Stevens, R. Taylor, Thermal diffusivity/conductivity of magnesium oxide/silicon carbide composites, J. Am. Ceram. Soc. 80 (1997) 699-704. https://doi.org/10.1111/j.1151-2916.1997.tb02887.x
- L. Guo, Y. Zhang, F. Ye, Phase structure evolution and thermophysical properties of nonstoichiometry Nd2-xZr2+xO7+x/2 pyrochlore ceramics, J. Am. Ceram. Soc. 98 (2015) 1013-1018. https://doi.org/10.1111/jace.13374
- A.J. Slifka, B.J. Filla, J. Phelps, Thermal conductivity of magnesium oxide from absolute, steady-state measurements, J. Res. Natl. Inst. Stand. Technol. 103 (1998) 357. https://doi.org/10.6028/jres.103.021
- R. Powell, C.Y. Ho, P.E. Liley, Thermal Conductivity of Selected Materials, US Department of Commerce, National Bureau of Standards Washington, DC, 1966.
- D. Stauffer, A. Aharony, Introduction to Percolation Theory, CRC press, 2018.
- G. Zhang, Y. Xia, H. Wang, Y. Tao, G. Tao, S. Tu, H. Wu, A percolation model of thermal conductivity for filled polymer composites, J. Compos. Mater. 44 (2010) 963-970. https://doi.org/10.1177/0021998309349690
- L. Kong, J. Zhang, Y. Maeda, M.G. Blackford, S. Li, G. Triani, D.J. Gregg, Novel synthesis and thermal property analysis of MgO-Nd2Zr2O7 composite, Ceram. Int. 42 (2016) 16888-16896. https://doi.org/10.1016/j.ceramint.2016.07.187
- Y. Kim, J. Lee, N. Kim, H.K. Yu, Thermal conductivity-controlled Zn-doped MgO/Mg(OH)2 micro-structures for high-efficiency thermo-dynamic heat energy storage, J. Asian Ceram. Soc. 8 (2020) 50-56. https://doi.org/10.1080/21870764.2019.1701221
- P.L. Kirillov, Thermophysical Properties of Materials for Nuclear Engineering: Tutorial for Students of Specialty Nuclear Power Plants, OBNINSK INSTITUTE FOR ATOMIC POWER ENGINEERING, 2006.