DOI QR코드

DOI QR Code

Enhancing the performance of a long-life modified CANDLE fast reactor by using an enriched 208Pb as coolant

  • Widiawati, Nina (Department of Physics, Institut Teknologi Bandung) ;
  • Su'ud, Zaki (Department of Physics, Institut Teknologi Bandung) ;
  • Irwanto, Dwi (Department of Physics, Institut Teknologi Bandung) ;
  • Permana, Sidik (Department of Physics, Institut Teknologi Bandung) ;
  • Takaki, Naoyuki (Department of Nuclear Safety Engineering, Tokyo City University) ;
  • Sekimoto, Hiroshi (Emeritus Professor, Tokyo Institute of Technology)
  • Received : 2020.02.28
  • Accepted : 2020.07.08
  • Published : 2021.02.25

Abstract

The investigation of the utilization of enriched 208Pb as a coolant to enhance the performance of a long-life fast reactor with a Modified CANDLE (Constant Axial shape of Neutron flux, nuclide densities, and power shape During Life of Energy production) burnup scheme has performed. The analyzes were performed on a reactor with thermal power of 800 MegaWatt Thermal (MWTh) with a refueling process every 15 years. Uranium Nitride (enriched 15N), 208Pb, and High-Cr martensitic steel HT-9 were employed as fuel, coolant, and cladding materials, respectively. One of the Pb-nat isotopes, 208Pb, has the smallest neutron capture cross-section (0.23 mb) among other liquid metal coolants. Furthermore, the neutron-producing cross-section (n, 2n) of 208Pb is larger than sodium (Na). On the other hand, the inelastic scattering energy threshold of 208Pb is the highest among Na, natPb, and Bi. The small inelastic scattering cross-section of 208Pb can harden the neutron energy spectrum. Therefore, 208Pb is a better neutron multiplier than any other liquid metal coolant. The excess neutrons cause more production than consumption of 239Pu. Hence, it can reduce the initial fuel loading of the reactor. The selective photoreaction process was developing to obtain enriched 208Pb. The neutronic was calculated using SRAC and JENDL 4.0 as a nuclear data library. We obtained that the modified CANDLE reactor with enriched 208Pb as coolant and reflector has the highest k-eff among all reactors. Meanwhile, the natPb cooled reactor has the lowest k-eff. Thus, the utilization of the enriched 208Pb as the coolant can reduce reactor initial fuel loading. Moreover, the enriched 208Pb-cooled reactor has the smallest power peaking factor among all reactors. Therefore, the enriched 208Pb can enhance the performance of a long-life Modified CANDLE fast reactor.

Keywords

Acknowledgement

The research is funding by ITB research program of Ministry of research technology and higher education for the research activites and publication supports.

References

  1. Z. Su'ud, H. Sekimoto, Ann. Nucl. Energy 54 (2013) 58-66. https://doi.org/10.1016/j.anucene.2012.09.014
  2. H. Sekimoto, K. Ryu, Y. Yoshimura, Nucl. Sci. Eng. 139 (2001) 306-317. https://doi.org/10.13182/NSE01-01
  3. H. Sekimoto, Prog. Nucl. Energy 47 (2005) 91-98. https://doi.org/10.1016/j.pnucene.2005.05.007
  4. H. Sekimoto, A. Nagata, Prog. Nucl. Energy 50 (2008) 109-113. https://doi.org/10.1016/j.pnucene.2007.10.012
  5. Z. Su'ud, H. Sekimoto, Int. J. Nucl. Energy Sci. Technol. 5 (4) (2010) 347-368, https://doi.org/10.1504/IJNEST.2010.035544.
  6. Z. Su'ud, F.H. Irka, T. Imam, H. Sekimoto, P. Sidik, Advanced Materials Research, 2013.
  7. P. Hejzlar, R. Petroski, J. Cheatham, N. Touran, M. Cohen, B. Truong, R. Latta, M. Werner, T. Burke, J. Tandy, M. Garrett, B. Johnson, T. Ellis, J. Mcwhirter, A. Odedra, P. Schweiger, D. Adkisson, J. Gilleland, Nuclear Eng. fTechnol. 45 (2013) 731-744. https://doi.org/10.5516/NET.02.2013.520
  8. J. Gilleland, R. Petroski, K. Weaver, Engineering 2 (2016) 88-96. https://doi.org/10.1016/J.ENG.2016.01.024
  9. N. Takaki, H. Sekimoto, Prog. Nucl. Energy 50 (2008) 114-118. https://doi.org/10.1016/j.pnucene.2007.10.011
  10. M. Yan, H. Sekimoto, Prog. Nucl. Energy 50 (2008) 286-289. https://doi.org/10.1016/j.pnucene.2007.11.005
  11. H. Sekimoto, S. Miyashita, Energy Convers. Manag. 47 (2006) 2772-2780. https://doi.org/10.1016/j.enconman.2006.02.007
  12. H. Sekimoto, M. Yan, Energy Convers. Manag. 49 (2008) 1868-1872. https://doi.org/10.1016/j.enconman.2007.12.015
  13. Z. Suud, H. Sekimoto, Advanced Materials Research, 2014.
  14. E. Adamov, V. Orlov, A. Filin, V. Leonov, A. Sila-Novitski, V. Smirnov, V. Tsikunov, Nucl. Eng. Des. 173 (1997) 143-150. https://doi.org/10.1016/S0029-5493(97)00098-8
  15. OECD/NEA Nuclear Science Committee, Handbook on Lead-Bismuth Eutectic Alloy and Lead Properties, Materials Compatibility, Thermal-Hydraulics and Technologies, 2015.
  16. J. Zhang, Adv. Eng. Mater. 16 (2014) 349-356. https://doi.org/10.1002/adem.201300296
  17. T. Okawa, H. Sekimoto, Ann. Nucl. Energy 37 (2010) 1620-1625. https://doi.org/10.1016/j.anucene.2010.06.002
  18. E.P. Loewen, A.T. Tokuhiro, J. Nucl. Sci. Technol. 40 (2003) 614-627. https://doi.org/10.1080/18811248.2003.9715398
  19. Y. Lu, R. Zhu, Q. Fu, X. Wang, C. An, J. Chen, Nuclear Eng. Technol. 51 (2019) 546-555. https://doi.org/10.1016/j.net.2018.09.023
  20. G.L. Khorasanov, V.V. Korobeynikov, A.P. Ivanov, A.I. Blokhin, Nucl. Eng. Des. 239 (2009) 1703-1707. https://doi.org/10.1016/j.nucengdes.2008.06.009
  21. N. Widiawati, Z. Suud, D. Irwanto, H. Sekimoto, J. Phys.: Conf. Ser. 1090 (2018), 012071. https://doi.org/10.1088/1742-6596/1090/1/012071
  22. K. Shibata, O. Iwamoto, T. Nakagawa, N. Iwamoto, A. Ichihara, S. Kunieda, S. Chiba, K. Furutaka, N. Otuka, T. Ohsawa, T. Murata, H. Matsunobu, A. Zukeran, S. Kamada, J. Katakura, J. Nucl. Sci. Technol. 48 (2011) 1-30. https://doi.org/10.1080/18811248.2011.9711675
  23. A.N. Shmelev, G.G. Kulikov, V.A. Apse, E.G. Kulikov, V.V. Artisyuk, Sci. Technol. Nuclear Instal. 2011 (2011) 1-12.
  24. T. Okawa, H. Sekimoto, Prog. Nucl. Energy 53 (2011) 886-890. https://doi.org/10.1016/j.pnucene.2011.05.015
  25. B. Feng, E. Shwageraus, B. Forget, M.S. Kazimi, Prog. Nucl. Energy 53 (2011) 862-866. https://doi.org/10.1016/j.pnucene.2011.06.001
  26. S. Permana, G. Saputra, M. Suzuki, Z. Suud, M. Saito, Int. J. Hydrogen Energy 41 (2016) 7076-7081. https://doi.org/10.1016/j.ijhydene.2016.01.102
  27. K. Okumura, T. Kugo, K. Kaneko, K. Tsuchihachi, SRAC2006, A Comprehensive Neutronics Calculation Code System, 2007.