DOI QR코드

DOI QR Code

Similarity analysis of pixelated CdTe semiconductor gamma camera image using a quadrant bar phantom for nuclear medicine: Monte Carlo simulation study

  • Park, Chan Rok (Department of Radiological Science, Jeonju University) ;
  • Kang, Seong-Hyeon (Department of Radiological Science, Gachon University) ;
  • Lee, Youngjin (Department of Radiological Science, Gachon University)
  • 투고 : 2020.06.15
  • 심사 : 2020.12.09
  • 발행 : 2021.06.25

초록

In the nuclear medicine imaging, quality control (QC) process using quadrant bar phantom is fundamental aspect of evaluating the spatial resolution. In addition, QC process of gamma camera is performed by daily or weekly. Recently, Monte Carlo simulation using the Geant4 application for tomographic emission (GATE) is widely applied in the pre-clinical nuclear medicine field for modeling gamma cameras with pixelated cadmium telluride (CdTe) semiconductor detector. In this study, we modeled a pixelated CdTe semiconductor detector and quadrant bar phantom (0.5, 1.0, 1.5, and 2.0 mm bar thicknesses) using the GATE tool. Similarity analysis based on correlation coefficients and peak signal-to-noise ratios was performed to compare image qualities for various source to collimator distances (0, 2, 4, 6, and 8 cm) and collimator lengths (0.2, 0.4, 0.6, 0.8, and 1.0 cm). To this end, we selected reference images based on collimator length and source to collimator distance settings. The results demonstrate that as the collimator length increases and the source to collimator distance decreases, the similarity to reference images improves. Therefore, our simulation results represent valuable information for the modeling of CdTe-based semiconductor gamma imaging systems and QC phantoms in the field of nuclear medicine.

키워드

과제정보

This research was supported by the National Research Foundation of Korea funded by the Ministry of Science and ICT (No. NRF-2019R1F1A1062811).

참고문헌

  1. G. Santin, D. Strul, D. Lazaro, L. Simon, M. Krieguer, M.V. Martins, V. Breton, C. Morel, GATE: a geant4-based simulation platform for PET and SPECT integrating movement and time management, IEEE Trans. Nucl. Sci. 50 (2003) 1516-1521. https://doi.org/10.1109/TNS.2003.817974
  2. S. Staelens, D. Strul, G. Santin, S. Bandenberghe, M. Koole, Y. D'Asseler, I. Lemahieu, R. Van de Walle, Monte Carlo simulations of a scintillation camera using GATE: validation and application modeling, Phys. Med. Biol. 48 (2003) 3021-3042. https://doi.org/10.1088/0031-9155/48/18/305
  3. R. Barquero, H.P. Garcia, m.G. incio, P. Minguez, A. Cardenas, D. Martinez, M. Lassmann, 131I activity quantification of gamma camera planar images, Phys. Med. Biol. 62 (2017) 909-926. https://doi.org/10.1088/1361-6560/62/3/909
  4. S. Staelens, K. Vunckx, J.D. Beenhouwer, F. Beekman, Y. D'Asseler, J. Nuyts, I. lemahieu, GATE simulations for optimization of pinhole imaging, Nucl. Instrum. Methods A 569 (2006) 359-363. https://doi.org/10.1016/j.nima.2006.08.071
  5. C. Scheiber, C.C. Giakos, Medical applications of CdTe and CdZnTe detectors, Nucl. Instrum. Methods A 458 (2001) 12-25. https://doi.org/10.1016/S0168-9002(00)01032-9
  6. H. Lida, K. Ogawa, Comparison of a pixelated semiconductor detector and a non-pixelated scintillation detector in pinhole SPECT system for small animal study, Ann. Nucl. Med. 25 (2011) 143-150. https://doi.org/10.1007/s12149-010-0441-3
  7. K. Ogawa, N. Ohumura, H. Iida, K. Nakamura, T. Nakahara, A. Kubo, Development of an ultra-high resolution SPECT system with a CdTe semiconductor detector, Ann. Nucl. Med. 23 (2009) 763-770. https://doi.org/10.1007/s12149-009-0293-x
  8. S.J. Park, A.R. Yu, Y.J. Lee, Y.S. Kim, H.J. Kim, Feasibility of a CdTe-based SPECT for high-resolution low-dose small animal imaging: a Monte Carlo simulation study, J. Inst. Met. 9 (2014) 7001-7018.
  9. M.R. Hasan, H.R. khan, R. Rahman, S. Parvez, R. Islam, A.K. Paul, Quality control of gamma camera with SPECT system, Int. J. Med. Phys. Clin. Eng. Radiat. Oncol. 6 (2017) 225-232. https://doi.org/10.4236/ijmpcero.2017.63021
  10. P.H. Murphy, Acceptance testing and quality control of gamma cameras, including SPECT, J. Nucl. Med. 28 (1987) 1221-1227.
  11. B. Kasal, P.F. Sharp, Gamma camera spatial resolution as measured by the bar phantom, Phys. Med. Biol. 30 (1985) 263-266. https://doi.org/10.1088/0031-9155/30/3/008
  12. A.F. Resch, A. Elia, H. Fuchs, A. Carlino, H. palmans, M. Stock, D. Georg, Evaluation of electromagnetic and nuclear scattering models in, GATE/Geant4 for proton therapy 46 (2019) 2444-2456.
  13. H. Wieczorek, A. Goedicke, Analytical model for SPECT detector concepts, IEEE Trans. Nucl. Sci. 53 (2006) 1102-1112. https://doi.org/10.1109/TNS.2006.874954
  14. L.S. Graham, Automatic tuning of scintillation cameras: a review, J. Nucl. Med. Technol. 14 (1986) 105-110.
  15. R. Accorsi, S.D. Metzler, Analytic determination of the resolution-equivalent effective diameter of a pinhole collimator, IEEE Trans. Med. Imag. 23 (2004) 750-763. https://doi.org/10.1109/TMI.2004.826951
  16. S. Staelens, D. Strul, G. Santinm, M. Koole, S. Vandenberghe, Y. D'Asseler, I. Lemahieu, R. Van de Walle, Monte Carlo simulations of a scintillation camera using GATE: validation and application modelling, Phys. Med. Biol. 48 (2003) 3021-3042. https://doi.org/10.1088/0031-9155/48/18/305
  17. Y.J. Lee, H.J. Ryu, H.M. Cho, S.W. Lee, Y.N. Choi, H.J. Kim, Optimization of an ultra-high-resolution parallel-hole collimator for CdTe semiconductor SPECT system, J. Inst. Met. 8 (2013) C01044.
  18. M. Kobayashi, H. Wakabayashi, D. Kayano, T. Konishi, H. Kojima, H. Yoneyama, K. Okuda, H. Tsushima, M. Onoguchi, K. Kawai, S. Kinuya, Application of a medium-energy collimator for I-131 imaging after ablation treatment of differentiated thyroid cancer, Ann. Nucl. Med. 28 (2014) 551-558. https://doi.org/10.1007/s12149-014-0845-6
  19. Y.J. Lee, H.J. Ryu, S.W. Lee, S.J. Park, H.J. Kim, Comparison of ultra-high-resolution parallel-hole collimator materials based on the CdTe pixelated semiconductor SPECT system, Nucl. Instrum. Methods A. 713 (2013) 33-39. https://doi.org/10.1016/j.nima.2013.03.014
  20. T.E. Peterson, L.R. Furenlid, SPECT detectors: the anger camera and beyond, Phys. Med. Biol. 56 (2011). R1445-R182.
  21. Y. Morimoto, Y. Ueno, W. Takeuchi, S. Kojima, K. Matsuzaki, T. Ishitsu, K. Umegaki, Y. Kiyanagi, N. Kubo, C. Katoh, T. Shiga, H. Shirato, N. Tamaki, Development of a 3D brain PET scanner using CdTe semiconductor detectors and its first clinical application, IEEE Trans. Nucl. Sci. 58 (2011) 2181-2189. https://doi.org/10.1109/TNS.2011.2146790