DOI QR코드

DOI QR Code

Study on sputtering yield of tungsten with different particle sizes: Surface roughness dependence

  • 투고 : 2020.11.14
  • 심사 : 2020.12.27
  • 발행 : 2021.06.25

초록

The sputtering yield of tungsten pellets composed of different particle sizes of <1, 12, 44-74, and 149-297 ㎛ was systematically investigated by bombardment with Ar+ ions accelerated at 2.0 keV in an ultra-high vacuum chamber. We found that the tungsten sample fabricated from larger particles had a higher surface roughness, based on the surface profile results. Using the data of the surface roughness for the four types of tungsten pellets, we confirmed that the sputtering yield for a tungsten pellet with the highest surface roughness was 7 times lower than that of the lowest surface roughness. This could be due to the redeposition of sputtered tungsten particles onto neighboring asperities.

키워드

과제정보

This research was funded by the National Research Foundation of Korea (NRF) funded by the Korean government (MSIP), grant number 2019M1A7A1A02085179. This work also supported by the 2020 Yeungnam University Research Grant.

참고문헌

  1. R. Toschi, Nuclear fusion, an energy source, Fusion Eng. Des. 36 (1997) 1-8. https://doi.org/10.1016/S0920-3796(97)00007-0
  2. J. Ongena, G.V. Oost, Energy for future centuries: will fusion Be an inexhaustible, safe, and clean energy source? Fusion Sci. Technol. 45 (2004) 3-14. https://doi.org/10.13182/FST04-A464
  3. C. Ren, Z.Z. Fang, H. Zhang, M. Koopman, The study on low temperature sintering of nano-tungsten powders, Int. J. Refract. Metals Hard Mater. 61 (2016) 273-278. https://doi.org/10.1016/j.ijrmhm.2016.10.003
  4. J. Jussila, F. Granberg, K. Nordlund, Effect of random surface orientation on W sputtering yields, Nucl. Mater. Energy 17 (2018) 113-122. https://doi.org/10.1016/j.nme.2018.08.002
  5. G. Federici, C.H. Skinner, J.N. Brooks, J.P. Coad, C. Grisolia, A.A. Haasz, A. Hassanein, V. Philipps, C.S. Pitcher, J. Roth, W.R. Wampler, D.G. Whyte, Plasma-material interactions in current tokamaks and their implications for next step fusion reactors, Nucl. Fusion 41 (2001) 1967-2137. https://doi.org/10.1088/0029-5515/41/12/218
  6. A. Kallenbach, R. Neu, R. Dux, H.U. Fahrbach, J.C. Fuchs, L. Giannone, O. Gruber, A. Herrmann, P.T. Lang, B. Lipschultz, C.F. Maggi, J. Neuhauser, V. Philipps, T. Putterich, V. Rohde, J. Roth, G. Sergienko, A. Sips, A.U. Team, Tokamak operation with high-Z plasma facing components, Plasma Phys. Contr. Fusion 47 (2005) B207-B222. https://doi.org/10.1088/0741-3335/47/12B/S16
  7. J. Roth, J. Bohdansky, W. Ottenberger, Unity yield conditions for sputtering of graphite by carbon ions, J. Nucl. Mater. 165 (1989) 193-198. https://doi.org/10.1016/0022-3115(89)90194-3
  8. D. Naujoks, K. Asmussen, M. Bessenrodt-Weberpals, S. Deschka, R. Dux, W. Engelhardt, A.R. Field, G. Fussmann, J.C. Fuchs, C. Garcia-Rosales, S. Hirsch, P. Ignacz, G. Lieder, K.F. Mast, R. Neu, R. Radtke, J. Roth, U. Wenzel, Tungsten as target material in fusion devices, Nucl. Fusion 36 (1996) 671-687. https://doi.org/10.1088/0029-5515/36/6/I01
  9. Y. Hirooka, M. Bourham, J.N. Brooks, R.A. Causey, G. Chevalier, R.W. Conn, W.H. Eddy, J. Gilligan, M. Khandagle, Y. Ra, Evaluation of tungsten as a plasma-facing material for steady state magnetic fusion devices, J. Nucl. Mater. 196-198 (1992) 149-158. https://doi.org/10.1016/S0022-3115(06)80022-X
  10. H. Xie, R. Ding, A. Kirschner, J.L. Chen, F. Ding, H.M. Mao, W. Feng, D. Borodin, L. Wang, ERO modelling of tungsten erosion and re-deposition in EAST L mode discharges, Phys. Plasmas 24 (2017), 092512. https://doi.org/10.1063/1.4991457
  11. B. Wielunska, M. Mayer, T. Schwarz-Selinger, A.E. Sand, W. Jacob, Deuterium retention in tungsten irradiated by different ions, Nucl. Fusion 60 (2020), 096002. https://doi.org/10.1088/1741-4326/ab9a65
  12. R. Neu, R. Dux, A. Geier, O. Gruber, A. Kallenbach, K. Krieger, H. Maier, R. Pugno, V. Rohde, S. Schweizer, Tungsten as plasma-facing material in ASDEX Upgrade, Fusion Eng. Des. 65 (2003) 367-374. https://doi.org/10.1016/S0920-3796(02)00381-2
  13. I. Bizyukov, K. Krieger, N. Azarenkov, U.v. Toussaint, Relevance of surface roughness to tungsten sputtering and carbon implantation, J. Appl. Phys. 100 (2006) 113302. https://doi.org/10.1063/1.2400393
  14. T. Putterich, R. Neu, R. Dux, A.D. Whiteford, M.G. O'Mullane, H.P. Summers, Calculation and experimental test of the cooling factor of tungsten, Nucl. Fusion 50 (2010), 025012. https://doi.org/10.1088/0029-5515/50/2/025012
  15. M. Hellwig, M. Koppen, A. Hiller, H.R. Koslowski, A. Litnovsky, K. Schmid, C. Schwab, R.A. De Souza, Impact of surface roughness on ion-surface interactions studied with energetic carbon ions 13C+ on tungsten surfaces, Condensed Matter 4 (2019) 29. https://doi.org/10.3390/condmat4010029
  16. A. Kreter, S. Brezinsek, T. Hirai, A. Kirschner, K. Krieger, M. Mayer, V. Philipps, A. Pospieszczyk, U. Samm, O. Schmitz, B. Schweer, G. Sergienko, K. Sugiyama, T. Tanabe, Y. Ueda, P. Wienhold, Effect of surface roughness and substrate material on carbon erosion and deposition in the TEXTOR tokamak, Plasma Phys. Contr. Fusion 50 (2008), 095008. https://doi.org/10.1088/0741-3335/50/9/095008
  17. A.V. Chankin, D.P. Coster, R. Dux, Monte Carlo simulations of tungsten redeposition at the divertor target, Plasma Phys. Contr. Fusion 56 (2014), 025003. https://doi.org/10.1088/0741-3335/56/2/025003
  18. Y. Li, Y. Yang, M.P. Short, Z. Ding, Z. Zeng, J. Li, Ion radiation albedo effect: influence of surface roughness on ion implantation and sputtering of materials, Nucl. Fusion 57 (2017), 016038. https://doi.org/10.1088/1741-4326/57/1/016038
  19. H. Nakamura, S. Saito, A.M. Ito, A. Takayama, Tungsten-surface-structure dependence of sputtering yield for a noble gas, Plasma Fusion Res. 11 (2016) 2401080. https://doi.org/10.1585/pfr.11.2401080
  20. F. Ding, G.-N. Luo, X. Chen, H. Xie, R. Ding, C. Sang, H. Mao, Z. Hu, J. Wu, Z. Sun, L. Wang, Y. Sun, J. Hu, E.T. the, Plasma-tungsten interactions in experimental advanced superconducting tokamak (EAST), Tungsten 1 (2019) 122-131. https://doi.org/10.1007/s42864-019-00019-4
  21. M. Kustner, W. Eckstein, V. Dose, J. Roth, The influence of surface roughness on the angular dependence of the sputter yield, Nucl. Instrum. Methods Phys. Res., Sect. B 145 (1998) 320-331. https://doi.org/10.1016/S0168-583X(98)00399-1
  22. R. Behrisch, W. Eckstein, Sputtering by Particle Bombardment, Springer-Verlag Berlin Heidelberg, 2007.
  23. Y. Yamamura, H. Tawara, Energy dependence of ion-induced sputtering yields from monatomic solids at normal incidence, Atomic Data Nucl. Data Tables 62 (1996) 149-253. https://doi.org/10.1006/adnd.1996.0005

피인용 문헌

  1. Effect of the Surface Roughness of Tungsten on the Sputtering Yield under Helium Irradiation: A Molecular Dynamics Study vol.11, pp.10, 2021, https://doi.org/10.3390/met11101532
  2. Favourable tuning of optical absorbance, bandgap and surface roughness of ZnO thin films by C ion implantation at the critical angle vol.7, 2021, https://doi.org/10.1016/j.apsadv.2021.100189