Acknowledgement
This research was supported by Wonkwang Digital University in 2021.
References
- Agoff, S.N., T.A. Brentnall, D.A. Crispin, S.L. Taylor, S. Raaka, R.C. Haggitt, M.W. Reed, I.A. Afonina, P.S. Rabinovitch, A.C. Stevens, Z. Feng and M.P. Bronner. 2000. The role of cyclooxygenase 2 in ulcerative colitis-associated neoplasia. Am. J. Pathol. 157:737-745. https://doi.org/10.1016/S0002-9440(10)64587-7
- Ardizzone, S. and P.G. Bianchi. 2005. Biologic therapy for inflammatory bowel disease. Drugs 65:2253-2286. https://doi.org/10.2165/00003495-200565160-00002
- Atreya, I., R. Atreya and M.F. Neurath. 2008. NF-kappa B in inflammatory bowel disease. J. Intern. Med. 263:591-596. https://doi.org/10.1111/j.1365-2796.2008.01953.x
- Baumgart, D.C. and S.R. Carding. 2007. Inflammatory bowel disease: Cause and immunobiology. Lancet 369:1627-1640. https://doi.org/10.1016/S0140-6736(07)60750-8
- Danese, S., M. Sans and C. Fiocchi. 2004. Inflammatory bowel disease; the role of environmental factors. Autoimmun. Rev. 3:394-400. https://doi.org/10.1016/j.autrev.2004.03.002
- Domenech, E. 2006. Inflammatory bowel disease: Current therapeutic options. Digestion 73:67-76. https://doi.org/10.1159/000089781
- Ferrer, M.D., C. Busquets-Cortes, X. Capo, S. Tejada, J.A. Tur, A. Pons and A. Sureda. 2019. Cyclooxygenase-2 inhibitors as a therapeutic target in inflammatory diseases. Curr. Med. Chem. 26:3225-3241. https://doi.org/10.2174/0929867325666180514112124
- He, J.M., S.C. Chen, R.P. Li, L.X. Yuan, J.M. Bao and M.L. Guo. 2015. Suppression of nuclear factor-kappa B and mitogen-activated protein kinase signalling pathways by goshonoside-F5 extracted from Rubi Fructus. Int. Immunopharmacol. 24:182-190. https://doi.org/10.1016/j.intimp.2014.12.007
- Hendrickson, B.A., R. Gokhale and J.H. Cho. 2002. Clinical aspects and pathophysiology of inflammatory bowel disease. Clin. Microbiol. Rev. 15:79-94. https://doi.org/10.1128/CMR.15.1.79-94.2002
- Hudcovic, T., R. Stepankova, J. Cebra and H. TlaskalovaHogenova. 2001. The role of microflora in the development of intestinal inflammation: Acute and chronic colitis induced by dextran sulfate in germ-free and conventionally reared immunocompetent and immunodeficient mice. Folia Microbio. 46:565-572. https://doi.org/10.1007/BF02818004
- Jeong, M.Y., H.L. Kim, J. Park, Y. Jung, D.H. Youn, J.H. Lee, J.S. Jin, H.S. So, R. Park, S.H. Kim, S.J. Kim, S.H. Hong and J.Y. Um. 2015. Rubi Fructus (Rubus coreanus) activates the expression of thermogenic genes in vivo and in vitro. Int. J. Obes. (Lond). 39:456-464. https://doi.org/10.1038/ijo.2014.155
- Jung, S.H., H.Y. Yu, J.H. Seo, Y.J. Lee and M.W. Han. 2021. A study on the comparison of chemical characterization and ellagic acid content between distribution Bokbunja and Korean Native Bokbunja. Korean J. Plant Res. 34:177-185. https://doi.org/10.7732/KJPR.2021.34.2.177
- Li, Y., C. Soendergaard, F.H. Bergenheim, D.M. Aronoff, G. Milne, L.B. Riis, J.B. Seidelin, K.B. Jensen and O.H. Nielsen. 2018. COX-2-PGE(2) signaling impairs intestinal epithelial regeneration and associates with TNF inhibitor responsiveness in ulcerative colitis. EBioMedicine 36:497-507. https://doi.org/10.1016/j.ebiom.2018.08.040
- Lin, X., Q. Sun, L. Zhou, M. He, X. Dong, M. Lai, M. Liu, Y. Su, C. Jia, Z. Han, S. Liu, H. Zheng, Y. Jiang, H. Ling, M. Li, J. Chen, Z. Zou and X. Bai. 2018. Colonic epithelial mTORC1 promotes ulcerative colitis through COX-2-mediated Th17 responses. Mucosal. Immunol. 11:1663-1673. https://doi.org/10.1038/s41385-018-0018-3
- Nam, M.K., H.R. Choi, J.S. Cho, S.M. Cho, K.C. Ha, T.H. Kim, H.Y. Ryu and Y.I. Lee. 2014. Inhibitory effects of Rubi Fructus extracts on hepatic steatosis development in high-fat diet-induced obese mice. Mol. Med. Rep. 10:1821-1827. https://doi.org/10.3892/mmr.2014.2398
- Periasamy, S., W.H. Wu, S.P. Chien, C.T. Liu and M.Y. Liu. 2020. Dietary Ziziphus jujuba fruit attenuates colitis-associated tumorigenesis: A pivotal role of the NF-kappaB/IL-6/JAK1/STAT3 pathway. Nutr. Cancer. 72:120-132. https://doi.org/10.1080/01635581.2019.1615515
- Ramakers, J.D., M.I. Verstege, G. Thuijls, A.A. Te Velde, R.P. Mensink and J. Plat. 2007. The PPARgamma agonist rosiglitazone impairs colonic inflammation in mice with experimental colitis. J. Clin. Immunol. 27:275-283. https://doi.org/10.1007/s10875-007-9074-2
- Roberts, P.J., K. Morgan, R. Miller, J.O. Hunter and S.J. Middleton. 2001. Neuronal COX-2 expression in human myenteric plexus in active inflammatory bowel disease. Gut 48:468-472. https://doi.org/10.1136/gut.48.4.468
- Rogler, G., K. Brand, D. Vogl, S. Page, R. Hofmeister, T. Andus, R. Knuechel, P.A. Baeuerle, J. Scholmerich and V. Gross. 1998. Nuclear factor kappa B is activated in macrophages and epithelial cells of inflamed intestinal mucosa. Gastroenterology 115:537-569.
- Sandborn, W.J. and S.R. Targan. 2002. Biologic therapy of inflammatory bowel disease. Gastroenterology 122:1592-1608. https://doi.org/10.1053/gast.2002.33426
- Skupsky, J., S. Sabui, M. Hwang, M. Nakasaki, M.D. Cahalan and H.M. Said. 2020. Biotin supplementation ameliorates murine colitis by preventing NF-kappaB activation. Cell. Mol. Gastroenterol. Hepatol. 9:557-567. https://doi.org/10.1016/j.jcmgh.2019.11.011
- Tak, P.P. and G.S. Firestein. 2001. NF-κB: A key role in inflammatory disease. J. Clin. Invest. 107:7-11. https://doi.org/10.1172/JCI11830
- Tsuge, K., T. Inazumi, A. Shimamoto and Y. Sugimoto. 2019. Molecular mechanisms underlying prostaglandin E2-exacerbated inflammation and immune diseases. 2019. Int. Immunol. 31:597-606. https://doi.org/10.1093/intimm/dxz021
- Wirtz, S., V. Popp, M. Kindermann, K. Gerlach, B. Weigmann, S. Fichtner-Feigl and M.F. Neurath. 2017. Chemically induced mouse models of acute and chronic intestinal inflammation. Nat. Protoc. 12:1295-1309. https://doi.org/10.1038/nprot.2017.044
- Yashiro, M. 2014. Ulcerative colitis-associated colorectal cancer. World. J. Gastroenterol. 20:16389-16397. https://doi.org/10.3748/wjg.v20.i44.16389