DOI QR코드

DOI QR Code

The Ameliorative Effect of Rubi Fructus on DSS-induced Colitis in Mice

  • Myung, Noh-Yil (Department of Oriental Medicine and Healthcare, Wonkwang Digital University)
  • Received : 2021.05.17
  • Accepted : 2021.05.24
  • Published : 2021.06.01

Abstract

Ulcerative colitis (UC) is an inflammatory bowel disease and a chronic gastrointestinal disorder. Rubi Fructus (RF), the fruit of Rubus coreanus Miquel, is known to exert several pharmacological effects including anti-oxidative, anti-obesity and anti-inflammatory properties. However, the improving effect and mechanism of RF on intestinal inflammation is not been fully understood. The purpose of this study was to investigate the regulatory effect of RF on dextran sulfate sodium (DSS)-induced colitis in mice. We evaluated the effects of RF on DSS-induced clinical signs by analyzing weight loss and colon length. The inhibitory effects of RF on inflammatory mediators such as prostaglandin E2 (PGE2), cyclooxygenase (COX)-2, as well as the activation of nuclear factor-κB (NF-κB), were determined in colitis tissue. Our data indicated that mice treated with DSS showed clinical symptoms of colitis, including weight loss, colon length decrease and diarrhea. However, we observed that RF treatment significantly improved these clinical symptoms of weight loss, colon length decrease and diarrhea induced by DSS. RF inhibited the enhanced levels of COX-2 and PGE2 caused by DSS. We also showed that the anti-inflammatory mechanism of RF by suppressing the activation of NF-kB in DSS-treated colon tissues. Collectively, the findings of this study indicate the prospect of developing new drugs from RF for UC treatment.

Keywords

Acknowledgement

This research was supported by Wonkwang Digital University in 2021.

References

  1. Agoff, S.N., T.A. Brentnall, D.A. Crispin, S.L. Taylor, S. Raaka, R.C. Haggitt, M.W. Reed, I.A. Afonina, P.S. Rabinovitch, A.C. Stevens, Z. Feng and M.P. Bronner. 2000. The role of cyclooxygenase 2 in ulcerative colitis-associated neoplasia. Am. J. Pathol. 157:737-745. https://doi.org/10.1016/S0002-9440(10)64587-7
  2. Ardizzone, S. and P.G. Bianchi. 2005. Biologic therapy for inflammatory bowel disease. Drugs 65:2253-2286. https://doi.org/10.2165/00003495-200565160-00002
  3. Atreya, I., R. Atreya and M.F. Neurath. 2008. NF-kappa B in inflammatory bowel disease. J. Intern. Med. 263:591-596. https://doi.org/10.1111/j.1365-2796.2008.01953.x
  4. Baumgart, D.C. and S.R. Carding. 2007. Inflammatory bowel disease: Cause and immunobiology. Lancet 369:1627-1640. https://doi.org/10.1016/S0140-6736(07)60750-8
  5. Danese, S., M. Sans and C. Fiocchi. 2004. Inflammatory bowel disease; the role of environmental factors. Autoimmun. Rev. 3:394-400. https://doi.org/10.1016/j.autrev.2004.03.002
  6. Domenech, E. 2006. Inflammatory bowel disease: Current therapeutic options. Digestion 73:67-76. https://doi.org/10.1159/000089781
  7. Ferrer, M.D., C. Busquets-Cortes, X. Capo, S. Tejada, J.A. Tur, A. Pons and A. Sureda. 2019. Cyclooxygenase-2 inhibitors as a therapeutic target in inflammatory diseases. Curr. Med. Chem. 26:3225-3241. https://doi.org/10.2174/0929867325666180514112124
  8. He, J.M., S.C. Chen, R.P. Li, L.X. Yuan, J.M. Bao and M.L. Guo. 2015. Suppression of nuclear factor-kappa B and mitogen-activated protein kinase signalling pathways by goshonoside-F5 extracted from Rubi Fructus. Int. Immunopharmacol. 24:182-190. https://doi.org/10.1016/j.intimp.2014.12.007
  9. Hendrickson, B.A., R. Gokhale and J.H. Cho. 2002. Clinical aspects and pathophysiology of inflammatory bowel disease. Clin. Microbiol. Rev. 15:79-94. https://doi.org/10.1128/CMR.15.1.79-94.2002
  10. Hudcovic, T., R. Stepankova, J. Cebra and H. TlaskalovaHogenova. 2001. The role of microflora in the development of intestinal inflammation: Acute and chronic colitis induced by dextran sulfate in germ-free and conventionally reared immunocompetent and immunodeficient mice. Folia Microbio. 46:565-572. https://doi.org/10.1007/BF02818004
  11. Jeong, M.Y., H.L. Kim, J. Park, Y. Jung, D.H. Youn, J.H. Lee, J.S. Jin, H.S. So, R. Park, S.H. Kim, S.J. Kim, S.H. Hong and J.Y. Um. 2015. Rubi Fructus (Rubus coreanus) activates the expression of thermogenic genes in vivo and in vitro. Int. J. Obes. (Lond). 39:456-464. https://doi.org/10.1038/ijo.2014.155
  12. Jung, S.H., H.Y. Yu, J.H. Seo, Y.J. Lee and M.W. Han. 2021. A study on the comparison of chemical characterization and ellagic acid content between distribution Bokbunja and Korean Native Bokbunja. Korean J. Plant Res. 34:177-185. https://doi.org/10.7732/KJPR.2021.34.2.177
  13. Li, Y., C. Soendergaard, F.H. Bergenheim, D.M. Aronoff, G. Milne, L.B. Riis, J.B. Seidelin, K.B. Jensen and O.H. Nielsen. 2018. COX-2-PGE(2) signaling impairs intestinal epithelial regeneration and associates with TNF inhibitor responsiveness in ulcerative colitis. EBioMedicine 36:497-507. https://doi.org/10.1016/j.ebiom.2018.08.040
  14. Lin, X., Q. Sun, L. Zhou, M. He, X. Dong, M. Lai, M. Liu, Y. Su, C. Jia, Z. Han, S. Liu, H. Zheng, Y. Jiang, H. Ling, M. Li, J. Chen, Z. Zou and X. Bai. 2018. Colonic epithelial mTORC1 promotes ulcerative colitis through COX-2-mediated Th17 responses. Mucosal. Immunol. 11:1663-1673. https://doi.org/10.1038/s41385-018-0018-3
  15. Nam, M.K., H.R. Choi, J.S. Cho, S.M. Cho, K.C. Ha, T.H. Kim, H.Y. Ryu and Y.I. Lee. 2014. Inhibitory effects of Rubi Fructus extracts on hepatic steatosis development in high-fat diet-induced obese mice. Mol. Med. Rep. 10:1821-1827. https://doi.org/10.3892/mmr.2014.2398
  16. Periasamy, S., W.H. Wu, S.P. Chien, C.T. Liu and M.Y. Liu. 2020. Dietary Ziziphus jujuba fruit attenuates colitis-associated tumorigenesis: A pivotal role of the NF-kappaB/IL-6/JAK1/STAT3 pathway. Nutr. Cancer. 72:120-132. https://doi.org/10.1080/01635581.2019.1615515
  17. Ramakers, J.D., M.I. Verstege, G. Thuijls, A.A. Te Velde, R.P. Mensink and J. Plat. 2007. The PPARgamma agonist rosiglitazone impairs colonic inflammation in mice with experimental colitis. J. Clin. Immunol. 27:275-283. https://doi.org/10.1007/s10875-007-9074-2
  18. Roberts, P.J., K. Morgan, R. Miller, J.O. Hunter and S.J. Middleton. 2001. Neuronal COX-2 expression in human myenteric plexus in active inflammatory bowel disease. Gut 48:468-472. https://doi.org/10.1136/gut.48.4.468
  19. Rogler, G., K. Brand, D. Vogl, S. Page, R. Hofmeister, T. Andus, R. Knuechel, P.A. Baeuerle, J. Scholmerich and V. Gross. 1998. Nuclear factor kappa B is activated in macrophages and epithelial cells of inflamed intestinal mucosa. Gastroenterology 115:537-569.
  20. Sandborn, W.J. and S.R. Targan. 2002. Biologic therapy of inflammatory bowel disease. Gastroenterology 122:1592-1608. https://doi.org/10.1053/gast.2002.33426
  21. Skupsky, J., S. Sabui, M. Hwang, M. Nakasaki, M.D. Cahalan and H.M. Said. 2020. Biotin supplementation ameliorates murine colitis by preventing NF-kappaB activation. Cell. Mol. Gastroenterol. Hepatol. 9:557-567. https://doi.org/10.1016/j.jcmgh.2019.11.011
  22. Tak, P.P. and G.S. Firestein. 2001. NF-κB: A key role in inflammatory disease. J. Clin. Invest. 107:7-11. https://doi.org/10.1172/JCI11830
  23. Tsuge, K., T. Inazumi, A. Shimamoto and Y. Sugimoto. 2019. Molecular mechanisms underlying prostaglandin E2-exacerbated inflammation and immune diseases. 2019. Int. Immunol. 31:597-606. https://doi.org/10.1093/intimm/dxz021
  24. Wirtz, S., V. Popp, M. Kindermann, K. Gerlach, B. Weigmann, S. Fichtner-Feigl and M.F. Neurath. 2017. Chemically induced mouse models of acute and chronic intestinal inflammation. Nat. Protoc. 12:1295-1309. https://doi.org/10.1038/nprot.2017.044
  25. Yashiro, M. 2014. Ulcerative colitis-associated colorectal cancer. World. J. Gastroenterol. 20:16389-16397. https://doi.org/10.3748/wjg.v20.i44.16389