DOI QR코드

DOI QR Code

Biomineralization of three calcium silicate-based cements after implantation in rat subcutaneous tissue

  • Ranjdar Mahmood Talabani (Department of Conservative Dentistry, University of Sulaimani) ;
  • Balkees Taha Garib (Department of Oral Diagnosis, University of Sulaimani) ;
  • Reza Masaeli (Department of Dental Biomaterial, Tehran University of Medical Sciences) ;
  • Kavosh Zandsalimi (Department of Life Sciences Engineering, Faculty of New Sciences and Technologies, University of Tehran) ;
  • Farinaz Ketabat (Division of Biomedical Engineering, University of Saskatchewan)
  • 투고 : 2020.01.24
  • 심사 : 2020.08.07
  • 발행 : 2021.02.28

초록

Objectives: The aim of this study was to evaluate the dystrophic mineralization deposits from 3 calcium silicate-based cements (Micro-Mega mineral trioxide aggregate [MM-MTA], Biodentine [BD], and EndoSequence Root Repair Material [ESRRM] putty) over time after subcutaneous implantation into rats. Materials and Methods: Forty-five silicon tubes containing the tested materials and 15 empty tubes (serving as a control group) were subcutaneously implanted into the backs of 15 Wistar rats. At 1, 4, and 8 weeks after implantation, the animals were euthanized (n = 5 animals/group), and the silicon tubes were removed with the surrounding tissues. Histopathological tissue sections were stained with von Kossa stain to assess mineralization. Scanning electron microscopy and energy-dispersive X-ray spectroscopy (SEM/EDX) were also used to assess the chemical components of the surface precipitates deposited on the implant and the pattern of calcium and phosphorus distribution at the material-tissue interface. The calcium-to-phosphorus ratios were compared using the non-parametric Kruskal-Wallis test at a significance level of 5%. Results: The von Kossa staining showed that both BD and ESRRM putty induced mineralization starting at week 1; this mineralization increased further until the end of the study. In contrast, MM-MTA induced dystrophic calcification later, from 4 weeks onward. SEM/EDX showed no statistically significant differences in the calcium- and phosphorus-rich areas among the 3 materials at any time point (p > 0.05). Conclusions: After subcutaneous implantation, biomineralization of the 3-calcium silicate-based cements started early and increased over time, and all 3 tested cements generated calcium- and phosphorus-containing surface precipitates.

키워드

과제정보

The authors are indebted to Mrs. Ghodsie Morsali for her kind help and technical assistance.

참고문헌

  1. Wang Z. Bioceramic materials in endodontics. Endod Topics 2015;32:3-30. https://doi.org/10.1111/etp.12075
  2. Koch KA, Brave DG. Bioceramics, part I: the clinician's viewpoint. Dent Today 2012;31:130-135.
  3. Bueno CR, Valentim D, Marques VA, Gomes-Filho JE, Cintra LT, Jacinto RC, Dezan-Junior E. Biocompatibility and biomineralization assessment of bioceramic-, epoxy-, and calcium hydroxide-based sealers. Braz Oral Res 2016;30:S1806-83242016000100267.
  4. Jitaru S, Hodisan I, Timis L, Lucian A, Bud M. The use of bioceramics in endodontics - literature review. Clujul Med 2016;89:470-473.
  5. Prati C, Gandolfi MG. Calcium silicate bioactive cements: biological perspectives and clinical applications. Dent Mater 2015;31:351-370. https://doi.org/10.1016/j.dental.2015.01.004
  6. Gandolfi MG, Siboni F, Botero T, Bossu M, Riccitiello F, Prati C. Calcium silicate and calcium hydroxide materials for pulp capping: biointeractivity, porosity, solubility and bioactivity of current formulations. J Appl Biomater Funct Mater 2015;13:43-60.
  7. Reyes-Carmona JF, Felippe MS, Felippe WT. Biomineralization ability and interaction of mineral trioxide aggregate and white Portland cement with dentin in a phosphate-containing fluid. J Endod 2009;35:731-736. https://doi.org/10.1016/j.joen.2009.02.011
  8. Torabinejad M, Parirokh M, Dummer PM. Mineral trioxide aggregate and other bioactive endodontic cements: an updated overview - part II: other clinical applications and complications. Int Endod J 2018;51:284-317. https://doi.org/10.1111/iej.12843
  9. Koseoglu S, Pekbagr Yan K T, Kucukyilmaz E, Saglam M, Enhos S, Akgun A. Biological response of commercially available different tricalcium silicate-based cements and pozzolan cement. Microsc Res Tech 2017;80:994-999. https://doi.org/10.1002/jemt.22891
  10. Raghavendra SS, Jadhav GR, Gathani KM, Kotadia P. Bioceramics in endodontics - a review. J Istanb Univ Fac Dent 2017;51(Supplement 1):S128-S137.
  11. Koseoglu S, Pekbagr Yan K T, Kucukyilmaz E, Saglam M, Enhos S, Akgun A. Biological response of commercially available different tricalcium silicate-based cements and pozzolan cement. Microsc Res Tech 2017;80:994-999. https://doi.org/10.1002/jemt.22891
  12. Escobar-Garcia DM, Aguirre-Lopez E, Mendez-Gonzalez V, Pozos-Guillen A. Cytotoxicity and initial biocompatibility of endodontic biomaterials (MTA and Biodentine) used as root-end filling materials. BioMed Res Int 2016;2016:7926961.
  13. Han L, Okiji T. Uptake of calcium and silicon released from calcium silicate-based endodontic materials into root canal dentine. Int Endod J 2011;44:1081-1087. https://doi.org/10.1111/j.1365-2591.2011.01924.x
  14. Atmeh AR, Chong EZ, Richard G, Festy F, Watson TF. Dentin-cement interfacial interaction: calcium silicates and polyalkenoates. J Dent Res 2012;91:454-459. https://doi.org/10.1177/0022034512443068
  15. Charland T, Hartwell GR, Hirschberg C, Patel R. An evaluation of setting time of mineral trioxide aggregate and EndoSequence Root Repair Material in the presence of human blood and minimal essential media. J Endod 2013;39:1071-1072. https://doi.org/10.1016/j.joen.2013.04.041
  16. Tran D, He J, Glickman GN, Woodmansey KF. Comparative analysis of calcium silicate-based root filling materials using an open apex model. J Endod 2016;42:654-658. https://doi.org/10.1016/j.joen.2016.01.015
  17. Gomes Filho JE, Queiroz IO, Watanabe S, Cintra LT, Ervolino E. Influence of diabetes mellitus on the mineralization ability of two endodontic materials. Braz Oral Res 2016;30:S1806-83242016000100218.
  18. Holland R, de Souza V, Nery MJ, Otoboni Filho JA, Bernabe PF, Dezan Junior E. Reaction of rat connective tissue to implanted dentin tubes filled with mineral trioxide aggregate or calcium hydroxide. J Endod 1999;25:161-166.
  19. Cintra LT, Ribeiro TA, Gomes-Filho JE, Bernabe PF, Watanabe S, Facundo AC, Samuel RO, Dezan-Junior E. Biocompatibility and biomineralization assessment of a new root canal sealer and root-end filling material. Dent Traumatol 2013;29:145-150. https://doi.org/10.1111/j.1600-9657.2012.01142.x
  20. Hench LL. Bioceramics: from concept to clinic. J Am Ceram 1991;74:1487-1510. https://doi.org/10.1111/j.1151-2916.1991.tb07132.x
  21. Bonewald LF, Harris SE, Rosser J, Dallas MR, Dallas SL, Camacho NP, Boyan B, Boskey A. von Kossa staining alone is not sufficient to confirm that mineralization in vitro represents bone formation. Calcif Tissue Int 2003;72:537-547.
  22. Camilleri J. Characterization of hydration products of mineral trioxide aggregate. Int Endod J 2008;41:408-417. https://doi.org/10.1111/j.1365-2591.2007.01370.x
  23. Yang WK, Ko HJ, Kim MR. Evaluation of the rat tissue reaction to experimental new resin cement and mineral trioxide aggregate cement. Restor Dent Endod 2012;37:194-200. https://doi.org/10.5395/rde.2012.37.4.194
  24. Bosio CC, Felippe GS, Bortoluzzi EA, Felippe MC, Felippe WT, Rivero ER. Subcutaneous connective tissue reactions to iRoot SP, mineral trioxide aggregate (MTA) Fillapex, DiaRoot BioAggregate and MTA. Int Endod J 2014;47:667-674.
  25. Clark G. Staining procedures. Baltimore, MD: Williams and Wilkins; 1981. p187.
  26. Gerstenfeld LC, Chipman SD, Glowacki J, Lian JB. Expression of differentiated function by mineralizing cultures of chicken osteoblasts. Dev Biol 1987;122:49-60. https://doi.org/10.1016/0012-1606(87)90331-9
  27. Cosme-Silva L, Dal-Fabbro R, Goncalves LO, Prado AS, Plazza FA, Viola NV, Cintra LT, Gomes Filho JE. Hypertension affects the biocompatibility and biomineralization of MTA, High-plasticity MTA, and Biodentine®. Braz Oral Res 2019;33:e060.
  28. Han L, Okiji T. Bioactivity evaluation of three calcium silicate-based endodontic materials. Int Endod J 2013;46:808-814. https://doi.org/10.1111/iej.12062
  29. Hinata G, Yoshiba K, Han L, Edanami N, Yoshiba N, Okiji T. Bioactivity and biomineralization ability of calcium silicate-based pulp-capping materials after subcutaneous implantation. Int Endod J 2017;50(Supplement 2):e40-e51.
  30. Yaltirik M, Ozbas H, Bilgic B, Issever H. Reactions of connective tissue to mineral trioxide aggregate and amalgam. J Endod 2004;30:95-99. https://doi.org/10.1097/00004770-200402000-00008
  31. Ozbas H, Yaltirik M, Bilgic B, Issever H. Reactions of connective tissue to compomers, composite and amalgam root-end filling materials. Int Endod J 2003;36:281-287. https://doi.org/10.1046/j.1365-2591.2003.00649.x
  32. Bueno CR, Vasques AM, Cury MT, Sivieri-Araujo G, Jacinto RC, Gomes-Filho JE, Cintra LT, Dezan-Junior E. Biocompatibility and biomineralization assessment of mineral trioxide aggregate flow. Clin Oral Investig 2019;23:169-177.
  33. Cintra LT, Benetti F, de Azevedo Queiroz IO, de Araujo Lopes JM, Penha de Oliveira SH, Sivieri Araujo G, Gomes-Filho JE. Cytotoxicity, biocompatibility, and biomineralization of the new high-plasticity MTA material. J Endod 2017;43:774-778. https://doi.org/10.1016/j.joen.2016.12.018
  34. Tziafas D, Pantelidou O, Alvanou A, Belibasakis G, Papadimitriou S. The dentinogenic effect of mineral trioxide aggregate (MTA) in short-term capping experiments. Int Endod J 2002;35:245-254. https://doi.org/10.1046/j.1365-2591.2002.00471.x
  35. Dominguez MS, Witherspoon DE, Gutmann JL, Opperman LA. Histological and scanning electron microscopy assessment of various vital pulp-therapy materials. J Endod 2003;29:324-333. https://doi.org/10.1097/00004770-200305000-00003
  36. Sarkar NK, Caicedo R, Ritwik P, Moiseyeva R, Kawashima I. Physicochemical basis of the biologic properties of mineral trioxide aggregate. J Endod 2005;31:97-100. https://doi.org/10.1097/01.DON.0000133155.04468.41
  37. Seux D, Couble ML, Hartmann DJ, Gauthier JP, Magloire H. Odontoblast-like cytodifferentiation of human dental pulp cells in vitro in the presence of a calcium hydroxide-containing cement. Arch Oral Biol 1991;36:117-128. https://doi.org/10.1016/0003-9969(91)90074-5
  38. Schroder U. Effects of calcium hydroxide-containing pulp-capping agents on pulp cell migration, proliferation, and differentiation. J Dent Res 1985;64:541-548. https://doi.org/10.1177/002203458506400407
  39. Camilleri J, Sorrentino F, Damidot D. Investigation of the hydration and bioactivity of radiopacified tricalcium silicate cement, Biodentine and MTA Angelus. Dent Mater 2013;29:580-593. https://doi.org/10.1016/j.dental.2013.03.007
  40. Camilleri J. Characterization and hydration kinetics of tricalcium silicate cement for use as a dental biomaterial. Dent Mater 2011;27:836-844. https://doi.org/10.1016/j.dental.2011.04.010
  41. Setbon HM, Devaux J, Iserentant A, Leloup G, Leprince JG. Influence of composition on setting kinetics of new injectable and/or fast setting tricalcium silicate cements. Dent Mater 2014;30:1291-1303. https://doi.org/10.1016/j.dental.2014.09.005
  42. Murphy S, Wren AW, Towler MR, Boyd D. The effect of ionic dissolution products of Ca-Sr-Na-Zn-Si bioactive glass on in vitro cytocompatibility. J Mater Sci Mater Med 2010;21:2827-2834. https://doi.org/10.1007/s10856-010-4139-9
  43. Kim EJ, Bu SY, Sung MK, Choi MK. Effects of silicon on osteoblast activity and bone mineralization of MC3T3-E1 cells. Biol Trace Elem Res 2013;152:105-112. https://doi.org/10.1007/s12011-012-9593-4
  44. Shokouhinejad N, Nekoofar MH, Razmi H, Sajadi S, Davies TE, Saghiri MA, Gorjestani H, Dummer PM. Bioactivity of EndoSequence root repair material and bioaggregate. Int Endod J 2012;45:1127-1134. https://doi.org/10.1111/j.1365-2591.2012.02083.x
  45. Ma J, Shen Y, Stojicic S, Haapasalo M. Biocompatibility of two novel root repair materials. J Endod 2011;37:793-798.
  46. Dawood AE, Parashos P, Wong RH, Reynolds EC, Manton DJ. Calcium silicate-based cements: composition, properties, and clinical applications. J Investig Clin Dent 2017;8:e12195.
  47. Hansen SW, Marshall JG, Sedgley CM. Comparison of intracanal EndoSequence Root Repair Material and ProRoot MTA to induce pH changes in simulated root resorption defects over 4 weeks in matched pairs of human teeth. J Endod 2011;37:502-506. https://doi.org/10.1016/j.joen.2011.01.010