DOI QR코드

DOI QR Code

Basic Physical Principles and Clinical Applications of Computed Tomography

  • Jung, Haijo (Development Headquarter, FutureChem Co., Ltd)
  • 투고 : 2021.01.28
  • 심사 : 2021.03.15
  • 발행 : 2021.03.31

초록

The evolution of X-ray computed tomography (CT) has been based on the discovery of X-rays, the inception of the Radon transform, and the development of X-ray digital data acquisition systems and computer technology. Unlike conventional X-ray imaging (general radiography), CT reconstructs cross-sectional anatomical images of the internal structures according to X-ray attenuation coefficients (approximate tissue density) for almost every region in the body. This article reviews the essential physical principles and technical aspects of the CT scanner, including several notable evolutions in CT technology that resulted in the emergence of helical, multidetector, cone beam, portable, dual-energy, and phase-contrast CT, in integrated imaging modalities, such as positron-emission-tomography-CT and single-photon-emission-computed-tomography-CT, and in clinical applications, including image acquisition parameters, CT angiography, image adjustment, versatile image visualizations, volumetric/surface rendering on a computer workstation, radiation treatment planning, and target localization in radiotherapy. The understanding of CT characteristics will provide more effective and accurate patient care in the fields of diagnostics and radiotherapy, and can lead to the improvement of image quality and the optimization of exposure doses.

키워드

과제정보

I would like to express my appreciation to my son, SungJin Jung, who reviewed and encouraged me to prepare this manuscript. The research was supported by the FutureChem Co., Ltd and Division of Applied RI, Korean Institute of Radiological & Medical Sciences (KIRAMS).

참고문헌

  1. Goodman PC. The new light: discovery and introduction of the X-ray. AJR Am J Roentgenol. 1995;165:1041-1045. https://doi.org/10.2214/ajr.165.5.7572473
  2. Mould RF. Invited review: Rontgen and the discovery of X-rays. Br J Radiol. 1995;68:1145-1176. https://doi.org/10.1259/0007-1285-68-815-1145
  3. Beatty J. The radon transform and the mathematics of medical imaging. Waterville: Colby College, 2012 [cited 2021 Feb 15]. Available from: https://digitalcommons.colby.edu/cgi/viewcontent.cgi?article=1649&context=honorstheses.
  4. Barrett HH. III The radon transform and its applications. Prog Opt. 1984;21:217-286. https://doi.org/10.1016/S0079-6638(08)70123-9
  5. Hornegger J, Maier A, Kowarschik M, CT Image reconstruction basics. Radiology Key, 2018 [cited 2021 Feb 15]. Available from: https://radiologykey.com/ct-image-reconstruction-basics/.
  6. Maier A, Steidl S, Christlein V, Hornegger J. Medical imaging systems: an introductory guide. Cham: Springer Nature Switzerland AG; 2018:148-167.
  7. Goldman LW. Principles of CT and CT technology. J Nucl Med Technol. 2007;35:115-128; quiz 129-130. https://doi.org/10.2967/jnmt.107.042978
  8. Bae KT, Whiting BR. Basic principles of computed tomography physics and technical considerations. Radiology Key, 2016 [cited 2021 Feb 15]. Available from: https://radiologykey.com/basic-principles-of-computed-tomographyphysics-and-technical-considerations/.
  9. Hounsfield GN. Computerized transverse axial scanning (tomography). 1. Description of system. Br J Radiol. 1973;46:1016-1022. https://doi.org/10.1259/0007-1285-46-552-1016
  10. Rincon-Guio C, Gomez AM, Charry JD. The role of computed tomography as a prognostic tool in traumatic brain trauma. Imaging Med. 2017;9:171-178.
  11. Kachelriess M, Schaller S, Kalender WA. Advanced singleslice rebinning in cone-beam spiral CT. Med Phys. 2000;27:754-772. https://doi.org/10.1118/1.598938
  12. Kak AC, Slaney M. Principles of computerized tomographic imaging. Philadelphia: Society of Industrial and Applied Mathematics; 1987:49-112.
  13. Stierstorfer K, Rauscher A, Boese J, Bruder H, Schaller S, Flohr T. Weighted FBP--a simple approximate 3D FBP algorithm for multislice spiral CT with good dose usage for arbitrary pitch. Phys Med Biol. 2004;49:2209-2218. https://doi.org/10.1088/0031-9155/49/11/007
  14. Flohr TG, Schaller S, Stierstorfer K, Bruder H, Ohnesorge BM, Schoepf UJ. Multi-detector row CT systems and image-reconstruction techniques. Radiology. 2005;235:756-773. https://doi.org/10.1148/radiol.2353040037
  15. Hata A, Yanagawa M, Honda O, Kikuchi N, Miyata T, Tsukagoshi S, et al. Effect of matrix size on the image quality of ultra-high-resolution CT of the lung: comparison of 512×512, 1024×1024, and 2048×2048. Acad Radiol. 2018;25:869-876. https://doi.org/10.1016/j.acra.2017.11.017
  16. Ginat DT, Gupta R. Advances in computed tomography imaging technology. Annu Rev Biomed Eng. 2014;16:431-453. https://doi.org/10.1146/annurev-bioeng-121813-113601
  17. Garvey CJ, Hanlon R. Computed tomography in clinical practice. BMJ. 2002;324:1077-1080. https://doi.org/10.1136/bmj.324.7345.1077
  18. Flohr T. CT systems. Curr Radiol Rep. 2013;1:52-63. https://doi.org/10.1007/s40134-012-0005-5
  19. van Ooijen PM, van Geuns RJ, Rensing BJ, Bongaerts AH, de Feyter PJ, Oudkerk M. Noninvasive coronary imaging using electron beam CT: surface rendering versus volume rendering. AJR Am J Roentgenol. 2003;180:223-226. https://doi.org/10.2214/ajr.180.1.1800223
  20. Kopp AF, Klingenbeck-Regn K, Heuschmid M, Kuttner A, Ohnesorge B, Flohr T, et al. Multislice computed tomography: basic principles and clinical applications. Electromedica. 2000;68:94-105.
  21. Grajo JR, Patino M, Prochowski A, Sahani DV. Dual energy CT in practice: basic principles and applications. Appl Radiol. 2016;45:6-12.
  22. Sajja S, Lee Y, Eriksson M, Nordstrom H, Sahgal A, Hashemi M, et al. Technical principles of dual-energy cone beam computed tomography and clinical applications for radiation therapy. Adv Radiat Oncol. 2019;5:1-16. https://doi.org/10.1016/j.adro.2019.07.013
  23. Ohana M, Jeung MY, Labani A, El Ghannudi S, Roy C. Thoracic dual energy CT: acquisition protocols, current applications and future developments. Diagn Interv Imaging. 2014;95:1017-1026. https://doi.org/10.1016/j.diii.2014.01.001
  24. Coursey CA, Nelson RC, Boll DT, Paulson EK, Ho LM, Neville AM, et al. Dual-energy multidetector CT: how does it work, what can it tell us, and when can we use it in abdominopelvic imaging? Radiographics. 2010;30:1037-1055. https://doi.org/10.1148/rg.304095175
  25. Rassouli N, Etesami M, Dhanantwari A, Rajiah P. Detectorbased spectral CT with a novel dual-layer technology: principles and applications. Insights Imaging. 2017;8:589-598. https://doi.org/10.1007/s13244-017-0571-4
  26. Silva AC, Morse BG, Hara AK, Paden RG, Hongo N, Pavlicek W. Dual-energy (spectral) CT: applications in abdominal imaging. Radiographics. 2011;31:1031-1046; discussion 1047-1050. https://doi.org/10.1148/rg.314105159
  27. Lee SC, Kim HK, Chun IK, Cho MH, Cho MH, Lee SY. Development of a micro-CT system for small animal imaging. J Biomed Eng Res. 2004;25:97-102.
  28. Nam KY, Kim KW, Kim JH, Son HH, Ryu JH, Kang SH, et al. Micro-CT system for small animal imaging. Korean J Med Phys. 2008;19:102-112.
  29. Goldman LW. Principles of CT: radiation dose and image quality. J Nucl Med Technol. 2007;35:213-225; quiz 226-228. https://doi.org/10.2967/jnmt.106.037846
  30. Calhoun PS, Kuszyk BS, Heath DG, Carley JC, Fishman EK. Three-dimensional volume rendering of spiral CT data: theory and method. Radiographics. 1999;19:745-764. https://doi.org/10.1148/radiographics.19.3.g99ma14745
  31. Duran AH, Duran MN, Masood I, Maciolek LM, Hussain H. The additional diagnostic value of the three-dimensional volume rendering imaging in routine radiology practice. Cureus. 2019;11:e5579.
  32. Grunert P, Muller-Forell W, Darabi K, Reisch R, Busert C, Hopf N, et al. Basic principles and clinical applications of neuronavigation and intraoperative computed tomography. Comput Aided Surg. 1998;3:166-173. https://doi.org/10.3109/10929089809148141
  33. Liguori C, Frauenfelder G, Massaroni C, Saccomandi P, Giurazza F, Pitocco F, et al. Emerging clinical applications of computed tomography. Med Devices (Auckl). 2015;8:265-278. https://doi.org/10.2147/MDER.S70630
  34. Davis AT, Palmer AL, Nisbet A. Can CT scan protocols used for radiotherapy treatment planning be adjusted to optimize image quality and patient dose? A systematic review. Br J Radiol. 2017;90:20160406. https://doi.org/10.1259/bjr.20160406
  35. Posiewnik M, Piotrowski T. A review of cone-beam CT applications for adaptive radiotherapy of prostate cancer. Phys Med. 2019;59:13-21. https://doi.org/10.1016/j.ejmp.2019.02.014
  36. Srinivasan K, Mohammadi M, Shepherd J. Applications of linac-mounted kilovoltage Cone-beam Computed Tomography in modern radiation therapy: a review. Pol J Radiol. 2014;79:181-193. https://doi.org/10.12659/PJR.890745
  37. Abramovitch K, Rice DD. Basic principles of cone beam computed tomography. Dent Clin North Am. 2014;58:463-484. https://doi.org/10.1016/j.cden.2014.03.002
  38. Scarfe WC, Farman AG. What is cone-beam CT and how does it work? Dent Clin North Am. 2008;52:707-730, v. https://doi.org/10.1016/j.cden.2008.05.005
  39. Kumar M, Shanavas M, Sidappa A, Kiran M. Cone beam computed tomography - know its secrets. J Int Oral Health. 2015;7:64-68.
  40. Srinivasan K, Mohammadi M, Shepherd J. Cone beam computed tomography for adaptive radiotherapy treatment planning. J Med Biol Eng. 2014;34:377-385. https://doi.org/10.5405/jmbe.1372
  41. Miracle AC, Mukherji SK. Conebeam CT of the head and neck, part 1: physical principles. AJNR Am J Neuroradiol. 2009;30:1088-1095. https://doi.org/10.3174/ajnr.A1653
  42. Sepulcri M, Paronetto C, El Khouzai B, Novo A, Aldegheri V, Scaggion A, et al. Effectiveness of cone beam computed tomography imaging during radiation therapy for the detection of initial coronavirus lung disease 2019. Adv Radiat Oncol. 2020;5:697-699. https://doi.org/10.1016/j.adro.2020.04.019
  43. Guckenberger M. Image-guided radiotherapy based on kilovoltage cone-beam computed tomography - a review of technology and clinical outcome. Eur Oncol Haematol. 2011;7:121-124. https://doi.org/10.17925/EOH.2011.07.02.121
  44. Maher MM, Hahn PF, Gervais DA, Seoighe B, Ravenscroft JB, Mueller PR. Portable abdominal CT: analysis of quality and clinical impact in more than 100 consecutive cases. AJR Am J Roentgenol. 2004;183:663-670. https://doi.org/10.2214/ajr.183.3.1830663
  45. Rumboldt Z, Huda W, All JW. Review of portable CT with assessment of a dedicated head CT scanner. AJNR Am J Neuroradiol. 2009;30:1630-1636. https://doi.org/10.3174/ajnr.A1603
  46. Niu T, Zhu L. Low-dose quantitative cone-beam CT imaging in radiation therapy. Paper presented at: 2012 IEEE Nuclear Science Symposium and Medical Imaging Conference Record (NSS/MIC); 2012 Oct 27-Nov 3; Anaheim, USA. p. 2907-2909.
  47. Larke FJ, Kruger RL, Cagnon CH, Flynn MJ, McNitt-Gray MM, Wu X, et al. Estimated radiation dose associated with low-dose chest CT of average-size participants in the National Lung Screening Trial. AJR Am J Roentgenol. 2011;197:1165-1169. https://doi.org/10.2214/AJR.11.6533
  48. Ono K, Hiraoka T, Ono A, Komatsu E, Shigenaga T, Takaki H, et al. Low-dose CT scan screening for lung cancer: comparison of images and radiation doses between low-dose CT and follow-up standard diagnostic CT. Springerplus. 2013;2:393. https://doi.org/10.1186/2193-1801-2-393
  49. Su AW, Hillen TJ, Eutsler EP, Bedi A, Ross JR, Larson CM, et al. Low-dose computed tomography reduces radiation exposure by 90% compared with traditional computed tomography among patients undergoing hip-preservation surgery. Arthroscopy. 2019;35:1385-1392. https://doi.org/10.1016/j.arthro.2018.11.013
  50. Rampinelli C, Origgi D, Bellomi M. Low-dose CT: technique, reading methods and image interpretation. Cancer Imaging. 2013;12:548-556. https://doi.org/10.1102/1470-7330.2012.0049
  51. Kubo T, Ohno Y, Takenaka D, Nishino M, Gautam S, Sugimura K, et al. Standard-dose vs. low-dose CT protocols in the evaluation of localized lung lesions: capability for lesion characterization-iLEAD study. Eur J Radiol Open. 2016;3:67-73. https://doi.org/10.1016/j.ejro.2016.03.002
  52. Costello JE, Cecava ND, Tucker JE, Bau JL. CT radiation dose: current controversies and dose reduction strategies. AJR Am J Roentgenol. 2013;201:1283-1290. https://doi.org/10.2214/AJR.12.9720
  53. Willekens I, Buls N, Lahoutte T, Baeyens L, Vanhove C, Caveliers V, et al. Evaluation of the radiation dose in microCT with optimization of the scan protocol. Contrast Media Mol Imaging. 2010;5:201-207. https://doi.org/10.1002/cmmi.394
  54. Lell MM, Wildberger JE, Alkadhi H, Damilakis J, Kachelriess M. Evolution in computed tomography: the battle for speed and dose. Invest Radiol. 2015;50:629-644. https://doi.org/10.1097/RLI.0000000000000172
  55. Smith-Bindman R, Lipson J, Marcus R, Kim KP, Mahesh M, Gould R, et al. Radiation dose associated with common computed tomography examinations and the associated lifetime attributable risk of cancer. Arch Intern Med. 2009; 169:2078-2086. https://doi.org/10.1001/archinternmed.2009.427
  56. Obenaus A, Smith A. Radiation dose in rodent tissues during micro-CT imaging. J X-Ray Sci Technol. 2004;12:241-249.
  57. Goo HW. CT radiation dose optimization and estimation: an update for radiologists. Korean J Radiol. 2012;13:1-11. https://doi.org/10.3348/kjr.2012.13.1.1
  58. American Association of Physicists in Medicine. Specification and acceptance testing of computed tomography scanners. Alexandria: American Association of Physicists in Medicine. 1993; 39.
  59. An HJ, Son JM, Jin HM, Sung JW, Chun MS. Acceptance test and clinical commissioning of CT simulator. Prog Med Phys. 2019;30:160-166. https://doi.org/10.14316/pmp.2019.30.4.160
  60. American College of Radiology. The 2017 Computed Tomography Quality Control manual. American College of Radiology; 2017.
  61. Mutic S, Palta JR, Butker EK, Das IJ, Huq MS, Loo LN, et al. Quality assurance for computed-tomography simulators and the computed-tomography-simulation process: report of the AAPM Radiation Therapy Committee Task Group No. 66. Med Phys. 2003;30:2762-2792. https://doi.org/10.1118/1.1609271
  62. Appel E, Kropil P, Bethge OT, Aissa J, Thomas C, Antoch G, et al. Quality assurance in CT: implementation of the updated national diagnostic reference levels using an automated CT dose monitoring system. Clin Radiol. 2018;73:677.e13-e677.e20. https://doi.org/10.1016/j.crad.2018.02.012
  63. Mansour Z, Mokhtar A, Sarhan A, Ahmed MT, El-Diasty T. Quality control of CT image using American College of Radiology (ACR) phantom. Egypt J Radiol Nucl Med. 2016;47:1665-1671. https://doi.org/10.1016/j.ejrnm.2016.08.016
  64. McCollough CH, Bruesewitz MR, McNitt-Gray MF, Bush K, Ruckdeschel T, Payne JT, et al. The phantom portion of the American College of Radiology (ACR) computed tomography (CT) accreditation program: practical tips, artifact examples, and pitfalls to avoid. Med Phys. 2004;31:2423-2442. https://doi.org/10.1118/1.1769632