DOI QR코드

DOI QR Code

Water Budget Assessment for Soybean Grown in Paddy Fields Converted to Uplands Using APEX Model

APEX 모델을 이용한 콩 재배 밭 전환 논의 물수지 특성 평가

  • Choi, Soon-Kun (Climate Change Assessment Division, National Institute of Agricultural Sciences) ;
  • Jeong, Jaehak (AgriLife Research, Texas A&M University) ;
  • Yeob, So-Jin (Climate Change Assessment Division, National Institute of Agricultural Sciences) ;
  • Kim, Myung-Hyun (Climate Change Assessment Division, National Institute of Agricultural Sciences) ;
  • Kim, Min-Kyeong (Climate Change Assessment Division, National Institute of Agricultural Sciences)
  • Received : 2021.02.22
  • Accepted : 2021.06.10
  • Published : 2021.07.31

Abstract

The expansion of upland crop cultivation in rice paddy fields is recommended by the Korean government to solve the problem of falling rice price and reduction of rice farmer's income due to oversupply of rice. However, water use efficiency is significantly influenced by the land use change from paddy field to upland. Therefore, this study aimed to evaluate the water budget of soybean grown in using APEX (Agricultural Policy and Environmental eXtender) model. The amount of runoff was measured in a test bed located in Iksan, Jeollabu-do and used to calibrate and validate the simulated runoff by APEX model. From 2019 to 2020, the water budget of soybean grown in uplands were estimated and compared with the one grown in paddy fields. The calibration result of AP EX model for runoff showed that R2 (Coefficient of determination) and NSE (Nash-Sutcliffe efficiency) were 0.90 and 0.89, respectively. In addition, the validated results of R2 and NSE were 0.81 and 0.62, respectively. The comparative study of each component in water budget showed that the amounts of evapotranspiration and percolation estimated by APEX model were 549.1 mm and 375.8mm, respectively. The direct runoff amount from upland was 390.1 mm, which was less than that from paddy fields. The average amount of irrigation water was 28.7 mm, which was very small compared to the one from paddy fields.

Keywords

Acknowledgement

본 연구는 농촌진흥청 국립농업과학원 농업과학기술 연구개발사업(과제번호: PJ013417012020)의 지원으로 수행되었습니다.

References

  1. Bhandari, A. B., N. O. Nelson, D. W. Sweeney, C. Baffaut, J. A. Lory, A. Senaviratne, G. M. Pierzynski, K. A. Janssen, and P. L. Barnes, 2016. Calibration of the APEX model to simulate management practice effects on runoff, sediment, and phosphorus loss. Journal of Environmental Quality 46: 1332-1340. doi:10.2134/jeq2016.07.0272.
  2. Choi, S. K., 2019. APEX-Paddy model development and climate change impact assessment for paddy rice. Ph.D. diss., Seoul National University.
  3. Choi, Y. H., C. H. Won, J. Y. Seo, M. H. Shin, H. J. Yang, K. J. Lim, and J. D. Choi, 2009. Analysis and comparison about NPS of plane field and alpine field. Journal of Korean Society on Water Environment 25(5): 682-688 (in Korean).
  4. Jang, S., J. Park, H. J. Shin, H. Kim, R. Hong, and I. Song, 2020. Economic analysis of upland crop irrigation between individual and collective well water supply. Journal of the Korean Association of Geographic Information Studies 23(3) 192-207 (in Korean). doi:10.11108/kagis.2020.23.3.192.
  5. Jeon, J. H., J. K. Choi, K. S. Yoon, and C. G. Yoon, 2005. The comparison of water budget and nutrient loading from paddy field according to the irrigation methods. Korean Journal of Ecology and Environment 38(1): 118-127 (in Korean).
  6. Ji, H. C., J. K. Lee, K. Y. Kim, S. H. Yoon, Y. C. Lim, O. D. Kwon, and H. B. Lee, 2009. Evaluation of agronomic characteristics, forage production and quality of corn hybrids for silage at paddy field in southern region of Korea. Journal of the Korean Society of Grassland and Forage Science 29(1): 13-18 (in Korean). doi:10.5333/kgfs.2009.29.1.013.
  7. Jung, K. Y., E. S. Yun, C. Y. Park, J. B. Hwang, Y. D. Choi, and K. D. Park, 2011. Stress day index to predict soybean yield response by subsurface drainage in poorly drained sloping paddy fields. Korean Journal of Soil Science and Fertilizer 44(5): 702-708 (in Korean). doi:10.7745/kjssf.2011.44.5.702.
  8. Kim, M., J. Seo, H. Cho, K. Seong, J. Lee, S. Eom, W. Jeon, and J. Lee, 2007. Annul variation of soil properties and yield of soybean in paddy field. Korean Journal of Crop Science 52(4): 370-374 (in Korean).
  9. Kim, H. K., E. J. Lee, S. W. Park, and M. S. Kang, 2009. Assessment of the impacts of the impervious surface change in the farm region on watershed hydrology. Journal of The Korean Society of Agricultural Engineers 51(6): 17-23 (in Korean). doi:10.11108/kagis.2019.22.2.082.
  10. Kim, H. K., M. S. Kang, E. J. Lee, and S. W. Park, 2011. Climate and land use changes impacts on hydrology in a rural small watershed. Journal of the Korean Society of Agricultural Engineers 53(6): 75-84 (in Korean). doi:10.5389/KSAE.2011.53.6.075.
  11. Komatsu, Y., H. Kato, B. Zhu, T. Wang, F. Yang, R. Rakwal, and Y. Onda, 2018. Effects of slope gradient on runoff from bare-fallow purple soil in China under natural rainfall conditions. Journal of Mountain Science 15(4): 738-751. doi:10.1007/s11629-017-4714-3.
  12. Korean Statistical Information Service, Https://kosis.kr. Accessed 5 Feb. 2021.
  13. Lee, J. W., J. Y. Park, C. G. Jung, and S. J. Kim, 2019. Evaluation of land use change impact on hydrology and water quality health in Geum River basin. Journal of the Korean Association of Geographic Information Studies 22 (2): 82-96 (in Korean). doi:10.11108/kagis.2019.22.2.082.
  14. Ministry of Agriculture, Food and Rural Affairs, https://www.mafra.go.kr. Accessed 5 Feb. 2021.
  15. Moriasi, D. N., J. G. Arnold, M. W. Van Liew, R. L. Bingner, R. D. Harmel, and T. L. Veith, 2007. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE 50(3): 885-900. doi:10.13031/2013.23153.
  16. Mu, W., F. Yu, C. Li, Y. Xie, J. Tian, J. Liu, and N. Zhao, 2015. Effects of rainfall intensity and slope gradient on runoff and soil moisture content on different growing stages of spring maize. Water 7(6): 2990-3008. doi:10.3390/w7062990.
  17. Neal, J. H., 1938. The effect of the degree of slope and rainfall characteristics on runoff and soil erosion. Soil Science Society of America Journal 2(C): 525-532. doi:10.2136/sssaj1938.036159950002000c0083x.
  18. Oh, Y. Y., S. H. Lee, J. Jung, J. C. Ko, W. Y. Choi, J. H. Jeong, S. Kim, J. H. Ryu, Y. J. Kim, H. S. Bae, S. H. Lee, J. H. Kim, K. Y. Kim, Y. D. Kim, and S. L. Kim, 2016. Change of soil properties and crop productivity by paddy-upland rotation in newly reclaimed tidal land. The Journal of the Korean Society of International Agriculture 28(3): 390-396 (in Korean). doi:10.12719/KSIA.2016.28.3.390.
  19. Rural Development Administration, Http://soil.rda.go.kr. Accessed 9 Feb. 2021.
  20. Sakaguchi, A., S. Eguchi, T. Kato, M. Kasuya, K. Ono, A. Miyata, and N. Tase, 2014. Development and evaluation of a paddy module for improving hydrological simulation in SWAT. Agricultural Water Management 137: 116-122. doi:10.1016/j.agwat.2014.01.009.
  21. Song, J. H., M. S. Kang, I. H. Song, and J. R. Jang, 2012. Comparing farming methods in pollutant runoff loads from paddy fields using the CREAMS-PADDY model. Korean Journal of Environmental Agriculture 31(4): 318-327 (in Korean). doi:10.5338/kjea.2012.31.4.318.
  22. Tuppad, P., C. Santhi, X. Wang, J. R. Williams, R. Srinivasan, and P. H. Gowda, 2010. Simulation of conservation practices using the APEX model. Applied engineering in agriculture 26(5): 779-794. doi:10.13031/2013.34947.
  23. U. S. Department of Agriculture Soil Conservation Service, 1972. Estimation of direct runoff from storm rainfall contents, Ch. 10. In National Engineering Handbook Hydrology Section 4, 10.1-10.24. Washington, D.C.: U.S. Government Printing Office.
  24. U.S. Department of Agriculture Natural Resources Conservation Service, 2007. Hydrologic soil groups, Ch. 7. In Part 630 Hydrology National Engineering Handbook, 7.1-7.5. Washington, D.C.: U.S. Government Printing Office.
  25. van Genuchten, M. Th., 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal 44(5): 892-898. doi:10.2136/sssaj1980.03615995004400050002x.
  26. Wang, X., H. Yen, Q. Liu, and J. Liu, 2014. An auto-calibration tool for the Agricultural Policy Environmental eXtender (APEX) model. Transactions of the ASABE 57(4): 1087-1098. doi:10.13031/trans.57.10601.
  27. Williams, J. R., and R. C. Izaurralde, 2010. The APEX model, Ch. 18. In Watershed models, ed. V. P. Singh and D. K. Frevert, 437-482. Boca Raton, Florida: Tayler and Francis Group.
  28. Yoon, K. S., J. Y. Cho, J. K. Choi, J. G. Son, K. H. Han, Y. J. Kim, and J. Y. Choi, 2002. Changes of nutrient concentrations in root zone of a paddy plot and nutrient losses via infiltration during the rice cultivation period. Korean National Committee on Irrigation and Drainage 9(1): 59-69 (in Korean).
  29. Zhang, B., G. Feng, X. Kong, R. Lal, Y. Ouyang, A. Adeli, and J. N. Jenkins, 2016. Simulating yield potential by irrigation and yield gap of rainfed soybean using APEX model in a humid region. Agricultural Water Management 177: 440-453. doi:10.1016/j.agwat.2016.08.029.