References
- ASTM International (2009), Annual Book of Standards. Vol. 04.08, Soil and Rock, ASTM International, West Conshohocken, Pennsylvania, U.S.A.
- Bian, X., Li, W., Qian, Y. and Tutumluer, E. (2019), "Micromechanical particle interactions in railway ballast through DEM simulations of direct shear tests", Int. J. Geomech., 19(5), 04019031. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001403.
- Cerato, A.B. and Lutenegger, A.J. (2006), "Specimen size and scale effects of direct shear box tests of sands", Geotech. Test. J., 29(6), 1-10. https://doi.org/10.1520/GTJ100312.
- Cho, S.E. (2008), "Infiltration analysis to evaluate the surficial stability of two-layered slopes considering rainfall characteristics", Eng. Geol., 105(1), 32-43. https://doi.org/10.1016/j.enggeo.2008.12.007.
- Cundall, P.A. (1971), "A computer model for simulating progressive, large-scale movement in blocky rock system", Proceedings of the International Symposium on Rock Mechanics, Nancy, France,
- Cundall, P.A. and Strack, O.D.L. (1979), "A discrete numerical model for granular assemblies", Geotechnique, 29(1), 47-65. https://doi.org/10.1680/geot.1979.29.1.47.
- Gan, J.K.M., Fredlund, D.G. and Rahardjo, H. (1988), "Determination of the shear strength parameters of an unsaturated soil using the direct shear test", Can. Geotech. J., 25(8), 500-510. https://doi.org/10.1139/t88-055.
- Guo, P. (2008), "Modified direct shear test for anisotropic strength of sand", J. Geotech. Geoenviron. Eng., 134(9), 1311-1318. https://doi.org/10.1061/(ASCE)1090-0241(2008)134:9(1311).
- Hight, D.W. and Leroueil, S. (2003), "Characterisation of soils of engineering purposes", Proceedings of the International Workshop, Singapore, December.
- Itasca Consulting Group Inc. (2005), PFC-3D User's Guide Version 3.1, Itasca Consulting Group, Minnesota, U.S.A.
- Jewell, R.A. and Wroth, C.P. (1987), "Direct shear test on reinforced sand", Geotechnique, 37(1), 53-68. https://doi.org/10.1680/geot.1987.37.1.53.
- Kim, B.S., Shibuya, S., Park, S.W. and Kato, S. (2010), "Application of suction stress for estimating unsaturated shear strength of soils using direct shear testing under low confining pressure", Can. Geotech. J., 47(9), 955-970. https://doi.org/10.1139/T10-007.
- Kim B.S., Shibuya S., Park S.W. and Kato, S. (2012), "Effect of opening on shear behavior of granular material in direct shear test", KSCE J. Civ. Eng., 16(7), 1132-1142. https://doi.org/10.1007/s12205-012-1518-4.
- Kim, B.S., Shibuya, S., Park, S.W. and Kato, S. (2013), "Suction stress and its application on unsaturated direct shear test under constant volume condition", Eng. Geol., 155, 10-18. https://doi.org/10.1016/j.enggeo.2012.12.020.
- Kim, B.S., Park, S.W. and Kato, S. (2014), "DEM simulation on deformation mode and stress state for specimen shape in direct shear test", Int. J. Comput. Meth., 11(2), 1342004. https://doi.org/10.1142/S0219876213420048.
- Kodicherla, S.P.K., Gong, G., Yang, Z.X., Krabbenhoft, K., Fan, L., Moy, C.K. and Wilkinson, S. (2019), "The influence of particle elongations on direct shear behaviour of granular materials using DEM", Granul. Matter, 21(4), 1-12. https://doi.org/10.1007/s10035-019-0947-x.
- Lee, S., Chang, I., Chung, M.K., Kim, Y. and Kee, J. (2017), "Geotechnical shear behavior of xanthan gum biopolymer treated sand from direct shear testing", Geomech. Eng., 12(5), 831-847. https://doi.org/10.12989/gae.2017.12.5.831.
- Lin, H.D., Wang, C.C. and Wang, X.H. (2018), "A simplified method to estimate the total cohesion of unsaturated soil using an UC test", Geomech. Eng., 16(6), 599-608. https://doi.org/10.12989/gae.2018.16.6.599.
- Liu, S.H. (2006), "Simulating a direct shear box test by DEM", Can. Geotech. J., 43(2), 155-168. https://doi.org/10.1139/t05-097.
- Ng, C.W.W.,and Shi, Q. (1998), "A numerical investigation of the stability of unsaturated soil slopes subjected to transient seepage", Comput. Geotech., 22(1), 1-28. https://doi.org/10.1016/S0266-352X(97)00036-0.
- Ni, Q., Powrie, W., Zhang, X. and Harkness, R. (2000), "Effect of particle properties on soil behavior: 3-D numerical modeling of shearbox tests", In Numer. Methods in Geotech. Eng. (eds G.M. Filz and D.V. Griffiths), ASCE Geotechnical Special Publication (96), 58-70. https://doi.org/10.1061/40502(284)5.
- Meguid, M.A. and Khan, M.I. (2019). "On the role of geofoam density on the interface shear behavior of composite geosystems", Int. J. Geo-Eng., 10(1), 1-18. https://doi.org/10.1186/s40703-019-0103-9.
- Oda, M. and Iwashita, K. (2000), "Study on couple stress and shear band development in granular media based on numerical simulation analyses", Int. J. Eng. Sci., 38(15), 1713-1740. https://doi.org/10.1016/S0020-7225(99)00132-9.
- Oh, W.T. and Vanapalli, S. (2018), "Undrained shear strength of unsaturated soils under zero or low confining pressures in the vadose zone", Vadose Zone J., 17, 180024. https://doi.org/10.2136/vzj2018.01.0024.
- Palmeira, E.M. and Milligan, G.W.E. (1989), "Scale effects in direct shear tests on sand", Proceedings of 12th International Conference on Soil Mechanics and Foundation Engineering, Rio de Janeiro, Brasil.
- Parsons, J.D. (1936), "Progress report on an investigation of the shearing resistance of cohesionless soils", Proceedings of 1st International Conference on Soil Mechanics and Foundation Engineering, Cambridge, Massachusetts, U.S.A.
- Scarpelli, G. and Wood, D.M. (1982), "Experimental observations of shear band patterns in direct shear", Proceedings of the IUTAM Conference on Deformation and Failure of Granular Materials, Delft, The Netherlands, 472-484.
- Shibuya, S., Mitachi, T. and Tamate, S. (1997), "Interpretation of direct shear box testing of sands as quasi-simple shear", Geotechnique, 47(4), 769-790. https://doi.org/10.1680/geot.1997.47.4.769.
- Stone, K.J.L. and Muir Wood, D. (1992), "Effects of dilatancy and particle size observed in model tests on sand", Soils Found., 32(4), 43-57. https://doi.org/10.3208/sandf1972.32.4_43.
- Suhr, B., Marschnig, S. and Six, K. (2018), "Comparison of two different types of railway ballast in compression and direct shear tests: experimental results and DEM model validation", Granular Matter, 20(4), 1-13. https://doi.org/10.1007/s10035-018-0843-9.
- Sweta, K., and Hussaini, S.K.K. (2018), "Effect of shearing rate on the behavior of geogrid-reinforced railroad ballast under direct shear conditions", Geotext. Geomembranes, 46(3), 251-256. https://doi.org/10.1016/j.geotexmem.2017.12.001.
- Tatsuoka, F., Nakaumura, S., Huang, C.C. and Tani, K. (1990), "Strength anisotropy and shear band direction in plane strain tests in sand", Soils Found., 30(1), 35-54. https://doi.org/10.3208/sandf1972.30.35.
- Thornton, C. (2000), "Numerical simulations of deviatoric shear deformation of granular media", Geotechnique, 50(1), 43-53. https://doi.org/10.1680/geot.2000.50.1.43.
- Vanapalli, S.K., Fredlund, D.G., Pufahl, M.D. and Clifton, A.W. (1996), "Model for prediction of shear strength with respect to soil suction", Can. Geotech. J., 33(3), 379-392. https://doi.org/10.1139/t96-060.
- Wang, G. and Sassa, K. (2003), "Pore-pressure generation and movement of rainfall-induced landslides: Effects of grain size and fine-particle content", Eng. Geol., 69(1-2), 109-125. https://doi.org/10.1016/S0013-7952(02)00268-5.
- Xu, W.J., Li, C.Q. and Zhang, H.Y. (2015), "DEM analyses of the mechanical behavior of soil and soil-rock mixture via the 3D direct shear test", Geomech. Eng., 9(6), 815-827. http://doi.org/10.12989/gae.2015.9.6.815.
- Yan, W.M. (2009), "Fabric evolution in a numerical direct shear test," Comput. Geotech., 36(4), 597-603. https://doi.org/10.1016/j.compgeo.2008.09.007.
- Yatabe, R., Oshima, A. and Suzuki, K. (1995), "Results of round robin test on direct shear test", Proceedings of International Symposium on Direct Shear Box Testing of Soils, Paris, France, September.
- Zhang, L. and Thornton, C. (2007), "A numerical examination of the direct shear test", Geotechnique, 57(5), 343-354. https://doi.org/10.1680/geot.2007.57.4.343.