Browse > Article
http://dx.doi.org/10.12989/gae.2021.26.2.147

Establishing an opening size criterion in direct shear test using DEM Simulation  

Kim, Byeong-Su (Graduate School of Environmental and Life Science, Okayama University)
Publication Information
Geomechanics and Engineering / v.26, no.2, 2021 , pp. 147-160 More about this Journal
Abstract
Direct shear test has been widely used to examine the shear strength of geomaterials because of the simplicity of the testing method and apparatus. Three factors significantly affect the accuracy of the experimental results of direct shear tests, namely (1) the type of direct shear apparatus, (2) the specimen size (scale effect), and (3) the opening size between shear boxes. This study focused on the Threshold Line (TL), which is obtained based on experimental tests, as a guideline for setting the opening size between the shear boxes. The validity of the TL was examined using distinct element method (DEM) 3D simulations from the following four perspectives: the first and second perspectives investigated the influence of the mean particle size and particle size distribution for mean particle sizes larger than 0.8 mm. In the third perspective, the scale effect of the specimens for fixed and varying D:H ratios of the shear box to reduce the shear box size was examined. Lastly, in the fourth perspective, the validity of using the TL to determine the appropriate opening size for the samples with a mean particle size smaller than 0.8 mm was also examined based on the Threshold Point (TP). For each case, the results of the TPs obtained from the DEM simulations agreed well with those of the TL. These findings suggest that the TL is valid and the TL relational equation can be used for setting the opening size between the shear boxes in the direct shear test regardless of saturated and unsaturated soils.
Keywords
DEM simulation; direct shear test; opening size; threshold line (TL); threshold point (TP);
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Suhr, B., Marschnig, S. and Six, K. (2018), "Comparison of two different types of railway ballast in compression and direct shear tests: experimental results and DEM model validation", Granular Matter, 20(4), 1-13. https://doi.org/10.1007/s10035-018-0843-9.   DOI
2 Jewell, R.A. and Wroth, C.P. (1987), "Direct shear test on reinforced sand", Geotechnique, 37(1), 53-68. https://doi.org/10.1680/geot.1987.37.1.53.   DOI
3 Liu, S.H. (2006), "Simulating a direct shear box test by DEM", Can. Geotech. J., 43(2), 155-168. https://doi.org/10.1139/t05-097.   DOI
4 Tatsuoka, F., Nakaumura, S., Huang, C.C. and Tani, K. (1990), "Strength anisotropy and shear band direction in plane strain tests in sand", Soils Found., 30(1), 35-54. https://doi.org/10.3208/sandf1972.30.35.   DOI
5 Sweta, K., and Hussaini, S.K.K. (2018), "Effect of shearing rate on the behavior of geogrid-reinforced railroad ballast under direct shear conditions", Geotext. Geomembranes, 46(3), 251-256. https://doi.org/10.1016/j.geotexmem.2017.12.001.   DOI
6 Wang, G. and Sassa, K. (2003), "Pore-pressure generation and movement of rainfall-induced landslides: Effects of grain size and fine-particle content", Eng. Geol., 69(1-2), 109-125. https://doi.org/10.1016/S0013-7952(02)00268-5.   DOI
7 Yatabe, R., Oshima, A. and Suzuki, K. (1995), "Results of round robin test on direct shear test", Proceedings of International Symposium on Direct Shear Box Testing of Soils, Paris, France, September.
8 Bian, X., Li, W., Qian, Y. and Tutumluer, E. (2019), "Micromechanical particle interactions in railway ballast through DEM simulations of direct shear tests", Int. J. Geomech., 19(5), 04019031. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001403.   DOI
9 Ni, Q., Powrie, W., Zhang, X. and Harkness, R. (2000), "Effect of particle properties on soil behavior: 3-D numerical modeling of shearbox tests", In Numer. Methods in Geotech. Eng. (eds G.M. Filz and D.V. Griffiths), ASCE Geotechnical Special Publication (96), 58-70. https://doi.org/10.1061/40502(284)5.   DOI
10 ASTM International (2009), Annual Book of Standards. Vol. 04.08, Soil and Rock, ASTM International, West Conshohocken, Pennsylvania, U.S.A.
11 Ng, C.W.W.,and Shi, Q. (1998), "A numerical investigation of the stability of unsaturated soil slopes subjected to transient seepage", Comput. Geotech., 22(1), 1-28. https://doi.org/10.1016/S0266-352X(97)00036-0.   DOI
12 Cho, S.E. (2008), "Infiltration analysis to evaluate the surficial stability of two-layered slopes considering rainfall characteristics", Eng. Geol., 105(1), 32-43. https://doi.org/10.1016/j.enggeo.2008.12.007.   DOI
13 Cundall, P.A. (1971), "A computer model for simulating progressive, large-scale movement in blocky rock system", Proceedings of the International Symposium on Rock Mechanics, Nancy, France,
14 Gan, J.K.M., Fredlund, D.G. and Rahardjo, H. (1988), "Determination of the shear strength parameters of an unsaturated soil using the direct shear test", Can. Geotech. J., 25(8), 500-510. https://doi.org/10.1139/t88-055.   DOI
15 Guo, P. (2008), "Modified direct shear test for anisotropic strength of sand", J. Geotech. Geoenviron. Eng., 134(9), 1311-1318. https://doi.org/10.1061/(ASCE)1090-0241(2008)134:9(1311).   DOI
16 Itasca Consulting Group Inc. (2005), PFC-3D User's Guide Version 3.1, Itasca Consulting Group, Minnesota, U.S.A.
17 Kim, B.S., Park, S.W. and Kato, S. (2014), "DEM simulation on deformation mode and stress state for specimen shape in direct shear test", Int. J. Comput. Meth., 11(2), 1342004. https://doi.org/10.1142/S0219876213420048.   DOI
18 Lin, H.D., Wang, C.C. and Wang, X.H. (2018), "A simplified method to estimate the total cohesion of unsaturated soil using an UC test", Geomech. Eng., 16(6), 599-608. https://doi.org/10.12989/gae.2018.16.6.599.   DOI
19 Palmeira, E.M. and Milligan, G.W.E. (1989), "Scale effects in direct shear tests on sand", Proceedings of 12th International Conference on Soil Mechanics and Foundation Engineering, Rio de Janeiro, Brasil.
20 Parsons, J.D. (1936), "Progress report on an investigation of the shearing resistance of cohesionless soils", Proceedings of 1st International Conference on Soil Mechanics and Foundation Engineering, Cambridge, Massachusetts, U.S.A.
21 Thornton, C. (2000), "Numerical simulations of deviatoric shear deformation of granular media", Geotechnique, 50(1), 43-53. https://doi.org/10.1680/geot.2000.50.1.43.   DOI
22 Vanapalli, S.K., Fredlund, D.G., Pufahl, M.D. and Clifton, A.W. (1996), "Model for prediction of shear strength with respect to soil suction", Can. Geotech. J., 33(3), 379-392. https://doi.org/10.1139/t96-060.   DOI
23 Xu, W.J., Li, C.Q. and Zhang, H.Y. (2015), "DEM analyses of the mechanical behavior of soil and soil-rock mixture via the 3D direct shear test", Geomech. Eng., 9(6), 815-827. http://doi.org/10.12989/gae.2015.9.6.815.   DOI
24 Oh, W.T. and Vanapalli, S. (2018), "Undrained shear strength of unsaturated soils under zero or low confining pressures in the vadose zone", Vadose Zone J., 17, 180024. https://doi.org/10.2136/vzj2018.01.0024.   DOI
25 Kim, B.S., Shibuya, S., Park, S.W. and Kato, S. (2010), "Application of suction stress for estimating unsaturated shear strength of soils using direct shear testing under low confining pressure", Can. Geotech. J., 47(9), 955-970. https://doi.org/10.1139/T10-007.   DOI
26 Yan, W.M. (2009), "Fabric evolution in a numerical direct shear test," Comput. Geotech., 36(4), 597-603. https://doi.org/10.1016/j.compgeo.2008.09.007.   DOI
27 Zhang, L. and Thornton, C. (2007), "A numerical examination of the direct shear test", Geotechnique, 57(5), 343-354. https://doi.org/10.1680/geot.2007.57.4.343.   DOI
28 Meguid, M.A. and Khan, M.I. (2019). "On the role of geofoam density on the interface shear behavior of composite geosystems", Int. J. Geo-Eng., 10(1), 1-18. https://doi.org/10.1186/s40703-019-0103-9.   DOI
29 Oda, M. and Iwashita, K. (2000), "Study on couple stress and shear band development in granular media based on numerical simulation analyses", Int. J. Eng. Sci., 38(15), 1713-1740. https://doi.org/10.1016/S0020-7225(99)00132-9.   DOI
30 Cerato, A.B. and Lutenegger, A.J. (2006), "Specimen size and scale effects of direct shear box tests of sands", Geotech. Test. J., 29(6), 1-10. https://doi.org/10.1520/GTJ100312.   DOI
31 Cundall, P.A. and Strack, O.D.L. (1979), "A discrete numerical model for granular assemblies", Geotechnique, 29(1), 47-65. https://doi.org/10.1680/geot.1979.29.1.47.   DOI
32 Hight, D.W. and Leroueil, S. (2003), "Characterisation of soils of engineering purposes", Proceedings of the International Workshop, Singapore, December.
33 Lee, S., Chang, I., Chung, M.K., Kim, Y. and Kee, J. (2017), "Geotechnical shear behavior of xanthan gum biopolymer treated sand from direct shear testing", Geomech. Eng., 12(5), 831-847. https://doi.org/10.12989/gae.2017.12.5.831.   DOI
34 Kim, B.S., Shibuya, S., Park, S.W. and Kato, S. (2013), "Suction stress and its application on unsaturated direct shear test under constant volume condition", Eng. Geol., 155, 10-18. https://doi.org/10.1016/j.enggeo.2012.12.020.   DOI
35 Kim B.S., Shibuya S., Park S.W. and Kato, S. (2012), "Effect of opening on shear behavior of granular material in direct shear test", KSCE J. Civ. Eng., 16(7), 1132-1142. https://doi.org/10.1007/s12205-012-1518-4.   DOI
36 Kodicherla, S.P.K., Gong, G., Yang, Z.X., Krabbenhoft, K., Fan, L., Moy, C.K. and Wilkinson, S. (2019), "The influence of particle elongations on direct shear behaviour of granular materials using DEM", Granul. Matter, 21(4), 1-12. https://doi.org/10.1007/s10035-019-0947-x.   DOI
37 Scarpelli, G. and Wood, D.M. (1982), "Experimental observations of shear band patterns in direct shear", Proceedings of the IUTAM Conference on Deformation and Failure of Granular Materials, Delft, The Netherlands, 472-484.
38 Shibuya, S., Mitachi, T. and Tamate, S. (1997), "Interpretation of direct shear box testing of sands as quasi-simple shear", Geotechnique, 47(4), 769-790. https://doi.org/10.1680/geot.1997.47.4.769.   DOI
39 Stone, K.J.L. and Muir Wood, D. (1992), "Effects of dilatancy and particle size observed in model tests on sand", Soils Found., 32(4), 43-57. https://doi.org/10.3208/sandf1972.32.4_43.   DOI