DOI QR코드

DOI QR Code

Deep learning algorithm of concrete spalling detection using focal loss and data augmentation

Focal loss와 데이터 증강 기법을 이용한 콘크리트 박락 탐지 심층 신경망 알고리즘

  • Shim, Seungbo (Dept. of Geotechnical Engineering Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Choi, Sang-Il (Dept. of Geotechnical Engineering Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Kong, Suk-Min (Dept. of Geotechnical Engineering Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Lee, Seong-Won (Dept. of Geotechnical Engineering Research, Korea Institute of Civil Engineering and Building Technology)
  • 심승보 (한국건설기술연구원 지반연구본부) ;
  • 최상일 (한국건설기술연구원 지반연구본부) ;
  • 공석민 (한국건설기술연구원 지반연구본부) ;
  • 이성원 (한국건설기술연구원 지반연구본부)
  • Received : 2021.07.01
  • Accepted : 2021.07.14
  • Published : 2021.07.31

Abstract

Concrete structures are damaged by aging and external environmental factors. This type of damage is to appear in the form of cracks, to proceed in the form of spalling. Such concrete damage can act as the main cause of reducing the original design bearing capacity of the structure, and negatively affect the stability of the structure. If such damage continues, it may lead to a safety accident in the future, thus proper repair and reinforcement are required. To this end, an accurate and objective condition inspection of the structure must be performed, and for this inspection, a sensor technology capable of detecting damage area is required. For this reason, we propose a deep learning-based image processing algorithm that can detect spalling. To develop this, 298 spalling images were obtained, of which 253 images were used for training, and the remaining 45 images were used for testing. In addition, an improved loss function and data augmentation technique were applied to improve the detection performance. As a result, the detection performance of concrete spalling showed a mean intersection over union of 80.19%. In conclusion, we developed an algorithm to detect concrete spalling through a deep learning-based image processing technique, with an improved loss function and data augmentation technique. This technology is expected to be utilized for accurate inspection and diagnosis of structures in the future.

콘크리트 구조물은 노후화와 외부 환경에 의한 요인으로 훼손된다. 이 같은 훼손은 가장 먼저 균열로 나타나고 향후에는 박락으로도 진행된다. 이러한 콘크리트 손상은 구조물이 갖는 본래의 설계 지지력을 감소시키는 주된 원인으로 작용할 수 있어 구조물의 안정성에 부정적인 영향을 미친다. 이러한 종류의 손상이 지속되면 안전사고로도 이어질 가능성이 있어 적절한 보수와 보강이 필요하다. 이를 위해서는 구조물에 대한 정확하고 객관적인 상태 점검이 이루어져야 하며 손상 영역을 탐지할 수 있는 센서 기술 또한 필요하다. 따라서 본 논문에서는 박락을 탐지할 수 있는 딥러닝 기반의 영상처리 알고리즘을 제안했다. 연구 과정에서 298장의 박락 영상을 확보하였으며, 이 가운데 253장을 학습용으로 사용했고, 나머지 45장을 테스트용으로 사용하였다. 아울러 본 논문에서는 탐지 성능을 향상하기 위해 향상된 손실함수와 데이트 증강 기법을 적용하였다. 그 결과 콘크리트 박락의 탐지 성능이 80.19%의 평균 중첩 정확도로 나타났다. 본 논문에서는 딥러닝 기반의 영상 처리 기법을 통해 콘크리트 박락을 탐지하는 기술을 개발했고, 향상된 손실 함수와 데이터 증강 기법으로 성능을 향상시키는 방법을 제안했다. 이 같은 기술은 향후 구조물의 정확한 점검과 진단에 활용될 것으로 기대된다.

Keywords

Acknowledgement

본 논문은 한국건설기술연구원 주요 사업 "이종 데이터 변환을 통한 준지도 학습 기반 균열 탐지 기술 개발"의 연구비 지원에 의해 수행되었습니다. 연구 지원에 감사드립니다.

References

  1. Dawood, T., Zhu, Z., Zayed, T. (2017), "Machine vision-based model for spalling detection and quantification in subway networks", Automation in Construction, Vol. 81, pp. 149-160. https://doi.org/10.1016/j.autcon.2017.06.008
  2. Dung, C.V., Anh, L.D. (2019), "Autonomous concrete crack detection using deep fully convolutional neural network", Automation in Construction, Vol. 99, pp. 52-58. https://doi.org/10.1016/j.autcon.2018.11.028
  3. Fujino, Y., Siringoringo, D.M. (2020), "Recent research and development programs for infrastructures maintenance, renovation and management in Japan", Structure and Infrastructure Engineering, Vol. 16, No. 1, pp. 3-25. https://doi.org/10.1080/15732479.2019.1650077
  4. Fujita, Y., Hamamoto, Y. (2011), "A robust automatic crack detection method from noisy concrete surfaces", Machine Vision and Applications, Vol. 22, No. 2, pp. 245-254. https://doi.org/10.1007/s00138-009-0244-5
  5. German, S., Brilakis, I., DesRoches, R. (2012), "Rapid entropy-based detection and properties measurement of concrete spalling with machine vision for post-earthquake safety assessments", Advanced Engineering Informatics, Vol. 26, No. 4, pp. 846-858. https://doi.org/10.1016/j.aei.2012.06.005
  6. Hoang, N.D. (2018), "Image processing-based recognition of wall defects using machine learning approaches and steerable filters", Computational Intelligence and Neuroscience, Vol. 2018.
  7. Hoang, N.D., Nguyen, Q.L., Tran, X.L. (2019). "Automatic detection of concrete spalling using piecewise linear stochastic gradient descent logistic regression and image texture analysis", Complexity, Vol. 2019.
  8. Kim, M.K., Sohn, H., Chang, C.C. (2015), "Localization and quantification of concrete spalling defects using terrestrial laser scanning", Journal of Computing in Civil Engineering, Vol. 29, No. 6, p. 04014086. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000415
  9. Li, S., Zhao, X., Zhou, G. (2019), "Automatic pixel-level multiple damage detection of concrete structure using fully convolutional network", Computer-Aided Civil and Infrastructure Engineering, Vol. 34, No. 7, pp. 616-634. https://doi.org/10.1111/mice.12433
  10. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollar, P. (2017), "Focal loss for dense object detection", Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, pp. 2980-2988.
  11. Liu, Z., Cao, Y., Wang, Y., Wang, W. (2019), "Computer vision-based concrete crack detection using U-net fully convolutional networks", Automation in Construction, Vol. 104, pp. 129-139. https://doi.org/10.1016/j.autcon.2019.04.005
  12. Nishikawa, T., Yoshida, J., Sugiyama, T., Fujino, Y. (2012), "Concrete crack detection by multiple sequential image filtering", Computer-Aided Civil and Infrastructure Engineering, Vol. 27, No. 1, pp. 29-47. https://doi.org/10.1111/j.1467-8667.2011.00716.x
  13. Shim, S., Kim, J., Cho, G.C., Lee, S.W. (2020), "Multiscale and adversarial learning-based semi-supervised semantic segmentation approach for crack detection in concrete structures", IEEE Access, Vol. 8, pp. 170939-170950. https://doi.org/10.1109/ACCESS.2020.3022786
  14. Wu, H., Ao, X., Chen, Z., Liu, C., Xu, Z., Yu, P. (2019), "Concrete spalling detection for metro tunnel from point cloud based on roughness descriptor", Journal of Sensors, Vol. 2019.
  15. Yang, L., Li, B., Li, W., Liu, Z., Yang, G., Xiao, J. (2017), "Deep concrete inspection using unmanned aerial vehicle towards CSSC database", Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Vancouver, Canada, pp. 24-28.
  16. Zhang, W., Zhang, Z., Qi, D., Liu, Y. (2014), "Automatic crack detection and classification method for subway tunnel safety monitoring", Sensors, Vol. 14, No. 10, pp. 19307-19328. https://doi.org/10.3390/s141019307