Acknowledgement
본 논문은 한국건설기술연구원 주요 사업 "이종 데이터 변환을 통한 준지도 학습 기반 균열 탐지 기술 개발"의 연구비 지원에 의해 수행되었습니다. 연구 지원에 감사드립니다.
References
- Dawood, T., Zhu, Z., Zayed, T. (2017), "Machine vision-based model for spalling detection and quantification in subway networks", Automation in Construction, Vol. 81, pp. 149-160. https://doi.org/10.1016/j.autcon.2017.06.008
- Dung, C.V., Anh, L.D. (2019), "Autonomous concrete crack detection using deep fully convolutional neural network", Automation in Construction, Vol. 99, pp. 52-58. https://doi.org/10.1016/j.autcon.2018.11.028
- Fujino, Y., Siringoringo, D.M. (2020), "Recent research and development programs for infrastructures maintenance, renovation and management in Japan", Structure and Infrastructure Engineering, Vol. 16, No. 1, pp. 3-25. https://doi.org/10.1080/15732479.2019.1650077
- Fujita, Y., Hamamoto, Y. (2011), "A robust automatic crack detection method from noisy concrete surfaces", Machine Vision and Applications, Vol. 22, No. 2, pp. 245-254. https://doi.org/10.1007/s00138-009-0244-5
- German, S., Brilakis, I., DesRoches, R. (2012), "Rapid entropy-based detection and properties measurement of concrete spalling with machine vision for post-earthquake safety assessments", Advanced Engineering Informatics, Vol. 26, No. 4, pp. 846-858. https://doi.org/10.1016/j.aei.2012.06.005
- Hoang, N.D. (2018), "Image processing-based recognition of wall defects using machine learning approaches and steerable filters", Computational Intelligence and Neuroscience, Vol. 2018.
- Hoang, N.D., Nguyen, Q.L., Tran, X.L. (2019). "Automatic detection of concrete spalling using piecewise linear stochastic gradient descent logistic regression and image texture analysis", Complexity, Vol. 2019.
- Kim, M.K., Sohn, H., Chang, C.C. (2015), "Localization and quantification of concrete spalling defects using terrestrial laser scanning", Journal of Computing in Civil Engineering, Vol. 29, No. 6, p. 04014086. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000415
- Li, S., Zhao, X., Zhou, G. (2019), "Automatic pixel-level multiple damage detection of concrete structure using fully convolutional network", Computer-Aided Civil and Infrastructure Engineering, Vol. 34, No. 7, pp. 616-634. https://doi.org/10.1111/mice.12433
- Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollar, P. (2017), "Focal loss for dense object detection", Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, pp. 2980-2988.
- Liu, Z., Cao, Y., Wang, Y., Wang, W. (2019), "Computer vision-based concrete crack detection using U-net fully convolutional networks", Automation in Construction, Vol. 104, pp. 129-139. https://doi.org/10.1016/j.autcon.2019.04.005
- Nishikawa, T., Yoshida, J., Sugiyama, T., Fujino, Y. (2012), "Concrete crack detection by multiple sequential image filtering", Computer-Aided Civil and Infrastructure Engineering, Vol. 27, No. 1, pp. 29-47. https://doi.org/10.1111/j.1467-8667.2011.00716.x
- Shim, S., Kim, J., Cho, G.C., Lee, S.W. (2020), "Multiscale and adversarial learning-based semi-supervised semantic segmentation approach for crack detection in concrete structures", IEEE Access, Vol. 8, pp. 170939-170950. https://doi.org/10.1109/ACCESS.2020.3022786
- Wu, H., Ao, X., Chen, Z., Liu, C., Xu, Z., Yu, P. (2019), "Concrete spalling detection for metro tunnel from point cloud based on roughness descriptor", Journal of Sensors, Vol. 2019.
- Yang, L., Li, B., Li, W., Liu, Z., Yang, G., Xiao, J. (2017), "Deep concrete inspection using unmanned aerial vehicle towards CSSC database", Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Vancouver, Canada, pp. 24-28.
- Zhang, W., Zhang, Z., Qi, D., Liu, Y. (2014), "Automatic crack detection and classification method for subway tunnel safety monitoring", Sensors, Vol. 14, No. 10, pp. 19307-19328. https://doi.org/10.3390/s141019307