DOI QR코드

DOI QR Code

시계열 데이터를 활용한 코로나19 동향 예측

Covid19 trends predictions using time series data

  • Kim, Jae-Ho (Department of Computer Science, The University of Suwon) ;
  • Kim, Jang-Young (Department of Computer Science, The University of Suwon)
  • 투고 : 2021.05.17
  • 심사 : 2021.06.05
  • 발행 : 2021.07.31

초록

국내 코로나19의 감염자 수가 백신과 사회적 거리 두기, 백신 등 여러 가지 노력 덕분에 차츰 줄어드는 듯 보였으나 2020년 2월 20일 특정한 사건 이후 감염자 수가 증가한 것처럼, 2020년 12월부터 또다시 급격히 감염자 수가 증가하는 추세이며 꾸준히 일일 500명가량의 감염자 수가 이어지고 있다. 따라서 Kaggle의 데이터셋을 이용해서 Prophet 알고리즘을 통해 미래 코로나19를 예측하고 사이킷런을 통해 결정계수, 평균 절대 오차, 평균 백분율 오차, 평균 제곱 차, 평균 제곱근 편차를 통해 이 예측에 대한 설명력을 더한다. 또한 코로나19가 급격히 특정한 사건이 없었을 경우 국내 감염자 수를 예측해 앞으로 우리가 미래의 질병에 대해서 방역과 방역 수칙 실천의 중요함을 강조한다.

The number of people infected with Covid-19 in Korea seemed to be gradually decreasing thanks to various efforts such as social distancing and vaccines. However, just as the number of infected people increased after a particular incident on February 20, 2020, the number of infected people has been increasing rapidly since December 2020 by approximately 500 per day. Therefore, the future Covid-19 is predicted through the Prophet algorithm using Kaggle's dataset, and the explanatory power for this prediction is added through the coefficient of determination, mean absolute error, mean percent error, mean square difference, and mean square deviation through Scikit-learn. Moreover, in the absence of a specific incident rapidly increasing the cases of Covid-19, the proposed method predicts the number of infected people in Korea and emphasizes the importance of implementing epidemic prevention and quarantine rules for future diseases.

키워드

참고문헌

  1. Coronavirus Infectious Disease-19(Covid-19) [Internet]. Available: http://ncov.mohw.go.kr/.
  2. Infection fatality rate of COVID-19 inferred from seroprevalence data (Bulletin of the World Health Organization. 2021), [Internet]. Available: https://www.who.int/bulletin/volumes/99/1/20-265892/en/.
  3. Covid19 Cases, Deaths Data set [Internet]. Available: https://www.kaggle.com/antgoldbloom/covid19-data-from-john-hopkins-university.
  4. M. J. Do, J. T. Kim, and B. S. Choe, "A study of epidemic model using SEIR model," Journal of the Korean Data and Information Sciencde Society, vol. 28, no. 2, pp. 297-397, Mar. 2017.
  5. S. M. Chae, "Coronavirus Infectious Disease-19 and Challenges for Future Disease Response," Korea Institute for Health and Social Affairs, no. 374, pp. 1-8, Mar. 2020.
  6. S. J. Taylor and L. Benjamin, "Forecasting at Scale," Facebook, Menlo Park, vol. 72, no. 1, pp. 37-45, Sep. 2018.
  7. FBProphet [Internet]. Available: https://facebook.github.io/prophet/docs/quick_start.html.
  8. S. W. Kim, "Basic Statistivcs," Hakjisa, pp. 127, 2016.
  9. API-Reference-scikit-learn [Internet]. Available: https://scikit-learn.org/stable/modules/classes.html#module-sklearn.metrics.