DOI QR코드

DOI QR Code

TRIB2 Stimulates Cancer Stem-Like Properties through Activating the AKT-GSK3β-β-Catenin Signaling Axis

  • Kim, Dae Kyoung (Department of Physiology, School of Medicine, Pusan National University) ;
  • Kim, Yu Na (Department of Physiology, School of Medicine, Pusan National University) ;
  • Kim, Ye Eun (Department of Physiology, School of Medicine, Pusan National University) ;
  • Lee, Seo Yul (Department of Physiology, School of Medicine, Pusan National University) ;
  • Shin, Min Joo (Department of Physiology, School of Medicine, Pusan National University) ;
  • Do, Eun Kyoung (Department of Physiology, School of Medicine, Pusan National University) ;
  • Choi, Kyung-Un (Department of Pathology, School of Medicine, Pusan National University) ;
  • Kim, Seung-Chul (Department of Obstetrics and Gynecology, School of Medicine, Pusan National University) ;
  • Kim, Ki-Hyung (Department of Obstetrics and Gynecology, School of Medicine, Pusan National University) ;
  • Suh, Dong-Soo (Department of Obstetrics and Gynecology, School of Medicine, Pusan National University) ;
  • Song, Parkyong (Department of Convergence Medicine, School of Medicine, Pusan National University) ;
  • Kim, Jae Ho (Department of Physiology, School of Medicine, Pusan National University)
  • Received : 2021.02.03
  • Accepted : 2021.05.12
  • Published : 2021.07.31

Abstract

Tribbles homolog 2 (TRIB2) is implicated in tumorigenesis and drug resistance in various types of cancers. However, the role of TRIB2 in the regulation of tumorigenesis and drug resistance of cancer stem cells (CSCs) is still elusive. In the present study, we showed increased expression of TRIB2 in spheroid-forming and aldehyde dehydrogenase-positive CSC populations of A2780 epithelial ovarian cancer cells. Short hairpin RNA-mediated silencing of TRIB2 expression attenuates the spheroid-forming, migratory, tumorigenic, and drug-resistant properties of A2780 cells, whereas overexpression of TRIB2 increases the CSC-like characteristics. TRIB2 overexpression induced GSK3β inactivation by augmenting AKT-dependent phosphorylation of GSK3β at Ser9, followed by increasing β-catenin level via reducing the GSK3β-mediated phosphorylation of β-catenin. Treatment of TRIB2-ovexpressed A2780 cells with the phosphoinositide3-kinase inhibitor LY294002 abrogated TRIB2-stimulated proliferation, migration, drug resistance of A2780 cells. These results suggest a critical role for TRIB2 in the regulation of CSC-like properties by increasing the stability of β-catenin protein via the AKT-GSK3β-dependent pathways.

Keywords

Acknowledgement

Support for this research was by the MRC programs (NRF-2015R1A5A2009656) of the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (NRF-2020R1I1A3073064; NRF-2020R1A2C2011880) and the 2019 Post-Doc Development program of Pusan National University.

References

  1. Al-Alem, L.F., Pandya, U.M., Baker, A.T., Bellio, C., Zarrella, B.D., Clark, J., DiGloria, C.M., and Rueda, B.R. (2019). Ovarian cancer stem cells: what progress have we made? Int. J. Biochem. Cell Biol. 107, 92-103. https://doi.org/10.1016/j.biocel.2018.12.010
  2. Anastas, J.N. and Moon, R.T. (2013). WNT signalling pathways as therapeutic targets in cancer. Nat. Rev. Cancer 13, 11-26. https://doi.org/10.1038/nrc3419
  3. Arend, R.C., Londono-Joshi, A.I., Straughn, J.M., Jr., and Buchsbaum, D.J. (2013). The Wnt/β-catenin pathway in ovarian cancer: a review. Gynecol. Oncol. 131, 772-779. https://doi.org/10.1016/j.ygyno.2013.09.034
  4. Bamias, A., Sotiropoulou, M., Zagouri, F., Trachana, P., Sakellariou, K., Kostouros, E., Kakoyianni, K., Rodolakis, A., Vlahos, G., Haidopoulos, D., et al. (2012). Prognostic evaluation of tumour type and other histopathological characteristics in advanced epithelial ovarian cancer, treated with surgery and paclitaxel/carboplatin chemotherapy: cell type is the most useful prognostic factor. Eur. J. Cancer 48, 1476-1483. https://doi.org/10.1016/j.ejca.2011.09.023
  5. Cancer Genome Atlas Research Network (2011). Integrated genomic analyses of ovarian carcinoma. Nature 474, 609-615. https://doi.org/10.1038/nature10166
  6. Cannistra, S.A. (2004). Cancer of the ovary. N. Engl. J. Med. 351, 2519-2529. https://doi.org/10.1056/NEJMra041842
  7. Cao, Z., Livas, T., and Kyprianou, N. (2016). Anoikis and EMT: lethal "liaisons" during cancer progression. Crit. Rev. Oncog. 21, 155-168. https://doi.org/10.1615/critrevoncog.2016016955
  8. Cervello, M., Augello, G., Cusimano, A., Emma, M.R., Balasus, D., Azzolina, A., McCubrey, J.A., and Montalto, G. (2017). Pivotal roles of glycogen synthase-3 in hepatocellular carcinoma. Adv. Biol. Regul. 65, 59-76. https://doi.org/10.1016/j.jbior.2017.06.002
  9. Chau, W.K., Ip, C.K., Mak, A.S., Lai, H.C., and Wong, A.S. (2013). c-Kit mediates chemoresistance and tumor-initiating capacity of ovarian cancer cells through activation of Wnt/β-catenin-ATP-binding cassette G2 signaling. Oncogene 32, 2767-2781. https://doi.org/10.1038/onc.2012.290
  10. Choi, E.J., Seo, E.J., Kim, D.K., Lee, S.I., Kwon, Y.W., Jang, I.H., Kim, K.H., Suh, D.S., and Kim, J.H. (2016). FOXP1 functions as an oncogene in promoting cancer stem cell-like characteristics in ovarian cancer cells. Oncotarget 7, 3506-3519. https://doi.org/10.18632/oncotarget.6510
  11. Clevers, H. (2006). Wnt/beta-catenin signaling in development and disease. Cell 127, 469-480. https://doi.org/10.1016/j.cell.2006.10.018
  12. Conic, I., Dimov, I., Tasic-Dimov, D., Djordjevic, B., and Stefanovic, V. (2011). Ovarian epithelial cancer stem cells. ScientificWorldJournal 11, 1243-1269. https://doi.org/10.1100/tsw.2011.112
  13. Cross, D.A., Alessi, D.R., Cohen, P., Andjelkovich, M., and Hemmings, B.A. (1995). Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 378, 785-789. https://doi.org/10.1038/378785a0
  14. Dion, L., Carton, I., Jaillard, S., Nyangoh Timoh, K., Henno, S., Sardain, H., Foucher, F., Leveque, J., de la Motte Rouge, T., Brousse, S., et al. (2020). The landscape and therapeutic implications of molecular profiles in epithelial ovarian cancer. J. Clin. Med. 9, 2239. https://doi.org/10.3390/jcm9072239
  15. Do, E.K., Park, J.K., Cheon, H.C., Kwon, Y.W., Heo, S.C., Choi, E.J., Seo, J.K., Jang, I.H., Lee, S.C., and Kim, J.H. (2017). Trib2 regulates the pluripotency of embryonic stem cells and enhances reprogramming efficiency. Exp. Mol. Med. 49, e401. https://doi.org/10.1038/emm.2017.191
  16. Erazo, T., Lorente, M., Lopez-Plana, A., Munoz-Guardiola, P., FernandezNogueira, P., Garcia-Martinez, J.A., Bragado, P., Fuster, G., Salazar, M., Espadaler, J., et al. (2016). The new antitumor drug ABTL0812 inhibits the Akt/mTORC1 axis by upregulating Tribbles-3 pseudokinase. Clin. Cancer Res. 22, 2508-2519. https://doi.org/10.1158/1078-0432.CCR-15-1808
  17. Eyers, P.A., Keeshan, K., and Kannan, N. (2017). Tribbles in the 21st century: the evolving roles of Tribbles pseudokinases in biology and disease. Trends Cell Biol. 27, 284-298. https://doi.org/10.1016/j.tcb.2016.11.002
  18. Friedman, A.D. (2015). C/EBPalpha in normal and malignant myelopoiesis. Int. J. Hematol. 101, 330-341. https://doi.org/10.1007/s12185-015-1764-6
  19. Geiger, T.R. and Peeper, D.S. (2009). Metastasis mechanisms. Biochim. Biophys. Acta 1796, 293-308.
  20. Grandinetti, K.B., Stevens, T.A., Ha, S., Salamone, R.J., Walker, J.R., Zhang, J., Agarwalla, S., Tenen, D.G., Peters, E.C., and Reddy, V.A. (2011). Overexpression of TRIB2 in human lung cancers contributes to tumorigenesis through downregulation of C/EBPalpha. Oncogene 30, 3328-3335. https://doi.org/10.1038/onc.2011.57
  21. Hill, R., Madureira, P.A., Ferreira, B., Baptista, I., Machado, S., Colaco, L., Dos Santos, M., Liu, N., Dopazo, A., Ugurel, S., et al. (2017). TRIB2 confers resistance to anti-cancer therapy by activating the serine/threonine protein kinase AKT. Nat. Commun. 8, 14687. https://doi.org/10.1038/ncomms14687
  22. Holland, J.D., Klaus, A., Garratt, A.N., and Birchmeier, W. (2013). Wnt signaling in stem and cancer stem cells. Curr. Opin. Cell Biol. 25, 254-264. https://doi.org/10.1016/j.ceb.2013.01.004
  23. Hua, F., Shang, S., Yang, Y.W., Zhang, H.Z., Xu, T.L., Yu, J.J., Zhou, D.D., Cui, B., Li, K., Lv, X.X., et al. (2019). TRIB3 interacts with beta-catenin and TCF4 to increase stem cell features of colorectal cancer stem cells and tumorigenesis. Gastroenterology 156, 708-721.e15. https://doi.org/10.1053/j.gastro.2018.10.031
  24. Jacob, F., Ukegjini, K., Nixdorf, S., Ford, C.E., Olivier, J., Caduff, R., Scurry, J.P., Guertler, R., Hornung, D., Mueller, R., et al. (2012). Loss of secreted frizzled-related protein 4 correlates with an aggressive phenotype and predicts poor outcome in ovarian cancer patients. PLoS One 7, e31885. https://doi.org/10.1371/journal.pone.0031885
  25. Jones, M.R., Kamara, D., Karlan, B.Y., Pharoah, P.D.P., and Gayther, S.A. (2017). Genetic epidemiology of ovarian cancer and prospects for polygenic risk prediction. Gynecol. Oncol. 147, 705-713. https://doi.org/10.1016/j.ygyno.2017.10.001
  26. Keeshan, K., He, Y., Wouters, B.J., Shestova, O., Xu, L., Sai, H., Rodriguez, C.G., Maillard, I., Tobias, J.W., Valk, P., et al. (2006). Tribbles homolog 2 inactivates C/EBPalpha and causes acute myelogenous leukemia. Cancer Cell 10, 401-411. https://doi.org/10.1016/j.ccr.2006.09.012
  27. Kritsch, D., Hoffmann, F., Steinbach, D., Jansen, L., Mary Photini, S., Gajda, M., Mosig, A.S., Sonnemann, J., Peters, S., Melnikova, M., et al. (2017). Tribbles 2 mediates cisplatin sensitivity and DNA damage response in epithelial ovarian cancer. Int. J. Cancer 141, 1600-1614. https://doi.org/10.1002/ijc.30860
  28. Lamouille, S., Xu, J., and Derynck, R. (2014). Molecular mechanisms of epithelial-mesenchymal transition. Nat. Rev. Mol. Cell Biol. 15, 178-196. https://doi.org/10.1038/nrm3758
  29. Liang, Y., Yu, D., Perez-Soler, R., Klostergaard, J., and Zou, Y. (2017). TRIB2 contributes to cisplatin resistance in small cell lung cancer. Oncotarget 8, 109596-109608. https://doi.org/10.18632/oncotarget.22741
  30. Liao, J., Qian, F., Tchabo, N., Mhawech-Fauceglia, P., Beck, A., Qian, Z., Wang, X., Huss, W.J., Lele, S.B., Morrison, C.D., et al. (2014). Ovarian cancer spheroid cells with stem cell-like properties contribute to tumor generation, metastasis and chemotherapy resistance through hypoxiaresistant metabolism. PLoS One 9, e84941. https://doi.org/10.1371/journal.pone.0084941
  31. Link, W. (2015). Tribbles breaking bad: TRIB2 suppresses FOXO and acts as an oncogenic protein in melanoma. Biochem. Soc. Trans. 43, 1085-1088. https://doi.org/10.1042/BST20150102
  32. Loessner, D., Stok, K.S., Lutolf, M.P., Hutmacher, D.W., Clements, J.A., and Rizzi, S.C. (2010). Bioengineered 3D platform to explore cellECM interactions and drug resistance of epithelial ovarian cancer cells. Biomaterials 31, 8494-8506. https://doi.org/10.1016/j.biomaterials.2010.07.064
  33. Lohan, F. and Keeshan, K. (2013). The functionally diverse roles of tribbles. Biochem. Soc. Trans. 41, 1096-1100. https://doi.org/10.1042/BST20130105
  34. Lupia, M. and Cavallaro, U. (2017). Ovarian cancer stem cells: still an elusive entity? Mol. Cancer 16, 64. https://doi.org/10.1186/s12943-017-0638-3
  35. Ma, X., Zhou, X., Qu, H., Ma, Y., Yue, Z., Shang, W., Wang, P., Xie, S., Li, Y., and Sun, Y. (2018). TRIB2 knockdown as a regulator of chemotherapy resistance and proliferation via the ERK/STAT3 signaling pathway in human chronic myelogenous leukemia K562/ADM cells. Oncol. Rep. 39, 1910-1918.
  36. Marcato, P., Dean, C.A., Giacomantonio, C.A., and Lee, P.W. (2011). Aldehyde dehydrogenase: its role as a cancer stem cell marker comes down to the specific isoform. Cell Cycle 10, 1378-1384. https://doi.org/10.4161/cc.10.9.15486
  37. Naora, H. and Montell, D.J. (2005). Ovarian cancer metastasis: integrating insights from disparate model organisms. Nat. Rev. Cancer 5, 355-366. https://doi.org/10.1038/nrc1611
  38. Nusse, R. and Clevers, H. (2017). Wnt/beta-catenin signaling, disease, and emerging therapeutic modalities. Cell 169, 985-999. https://doi.org/10.1016/j.cell.2017.05.016
  39. Orecchioni, S. and Bertolini, F. (2016). Characterization of cancer stem cells. Methods Mol. Biol. 1464, 49-62. https://doi.org/10.1007/978-1-4939-3999-2_5
  40. Peng, S., Maihle, N.J., and Huang, Y. (2010). Pluripotency factors Lin28 and Oct4 identify a sub-population of stem cell-like cells in ovarian cancer. Oncogene 29, 2153-2159. https://doi.org/10.1038/onc.2009.500
  41. Petrik, J.J. (2013). Challenges in experimental modeling of ovarian cancerogenesis. Methods Mol. Biol. 1049, 371-376. https://doi.org/10.1007/978-1-62703-547-7_28
  42. Qu, J., Liu, B., Li, B., Du, G., Li, Y., Wang, J., He, L., and Wan, X. (2019). TRIB3 suppresses proliferation and invasion and promotes apoptosis of endometrial cancer cells by regulating the AKT signaling pathway. Onco Targets Ther. 12, 2235-2245. https://doi.org/10.2147/OTT.S189001
  43. Sakai, S., Miyajima, C., Uchida, C., Itoh, Y., Hayashi, H., and Inoue, Y. (2016). Tribbles-related protein family members as regulators or substrates of the ubiquitin-proteasome system in cancer development. Curr. Cancer Drug Targets 16, 147-156. https://doi.org/10.2174/1568009616666151112122645
  44. Salazar, M., Lorente, M., Garcia-Taboada, E., Perez Gomez, E., Davila, D., Zuniga-Garcia, P., Maria Flores, J., Rodriguez, A., Hegedus, Z., MosenAnsorena, D., et al. (2015). Loss of Tribbles pseudokinase-3 promotes Aktdriven tumorigenesis via FOXO inactivation. Cell Death Differ. 22, 131-144. https://doi.org/10.1038/cdd.2014.133
  45. Salome, M., Campos, J., and Keeshan, K. (2015). TRIB2 and the ubiquitin proteasome system in cancer. Biochem. Soc. Trans. 43, 1089-1094. https://doi.org/10.1042/BST20150103
  46. Salome, M., Magee, A., Yalla, K., Chaudhury, S., Sarrou, E., Carmody, R.J., and Keeshan, K. (2018). A Trib2-p38 axis controls myeloid leukaemia cell cycle and stress response signalling. Cell Death Dis. 9, 443. https://doi.org/10.1038/s41419-018-0467-3
  47. Sato, R., Semba, T., Saya, H., and Arima, Y. (2016). Concise review: stem cells and epithelial-mesenchymal transition in cancer: biological implications and therapeutic targets. Stem Cells 34, 1997-2007. https://doi.org/10.1002/stem.2406
  48. Seo, E.J., Kim, D.K., Jang, I.H., Choi, E.J., Shin, S.H., Lee, S.I., Kwon, S.M., Kim, K.H., Suh, D.S., and Kim, J.H. (2016). Hypoxia-NOTCH1-SOX2 signaling is important for maintaining cancer stem cells in ovarian cancer. Oncotarget 7, 55624-55638. https://doi.org/10.18632/oncotarget.10954
  49. Singh, A. and Settleman, J. (2010). EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer. Oncogene 29, 4741-4751. https://doi.org/10.1038/onc.2010.215
  50. Sweeney, K., Cameron, E.R., and Blyth, K. (2020). Complex interplay between the RUNX transcription factors and Wnt/beta-catenin pathway in cancer: a tango in the night. Mol. Cells 43, 188-197. https://doi.org/10.14348/molcells.2019.0310
  51. Van Camp, J.K., Beckers, S., Zegers, D., and Van Hul, W. (2014). Wnt signaling and the control of human stem cell fate. Stem Cell Rev. Rep. 10, 207-229. https://doi.org/10.1007/s12015-013-9486-8
  52. Wang, J., Park, J.S., Wei, Y., Rajurkar, M., Cotton, J.L., Fan, Q., Lewis, B.C., Ji, H., and Mao, J. (2013). TRIB2 acts downstream of Wnt/TCF in liver cancer cells to regulate YAP and C/EBPalpha function. Mol. Cell 51, 211-225. https://doi.org/10.1016/j.molcel.2013.05.013
  53. Wang, Y., Hewitt, S.M., Liu, S., Zhou, X., Zhu, H., Zhou, C., Zhang, G., Quan, L., Bai, J., and Xu, N. (2006). Tissue microarray analysis of human FRAT1 expression and its correlation with the subcellular localisation of betacatenin in ovarian tumours. Br. J. Cancer 94, 686-691. https://doi.org/10.1038/sj.bjc.6602988
  54. Xu, S., Tong, M., Huang, J., Zhang, Y., Qiao, Y., Weng, W., Liu, W., Wang, J., and Sun, F. (2014). TRIB2 inhibits Wnt/beta-Catenin/TCF4 signaling through its associated ubiquitin E3 ligases, beta-TrCP, COP1 and Smurf1, in liver cancer cells. FEBS Lett. 588, 4334-4341. https://doi.org/10.1016/j.febslet.2014.09.042
  55. Yokoyama, T. and Nakamura, T. (2011). Tribbles in disease: signaling pathways important for cellular function and neoplastic transformation. Cancer Sci. 102, 1115-1122. https://doi.org/10.1111/j.1349-7006.2011.01914.x
  56. Zhang, S., Jing, Y., Zhang, M., Zhang, Z., Ma, P., Peng, H., Shi, K., Gao, W.Q., and Zhuang, G. (2015). Stroma-associated master regulators of molecular subtypes predict patient prognosis in ovarian cancer. Sci. Rep. 5, 16066. https://doi.org/10.1038/srep16066
  57. Zhang, X., Zhong, N., Li, X., and Chen, M.B. (2019). TRIB3 promotes lung cancer progression by activating beta-catenin signaling. Eur. J. Pharmacol. 863, 172697. https://doi.org/10.1016/j.ejphar.2019.172697
  58. Zyla, R.E., Olkhov-Mitsel, E., Amemiya, Y., Bassiouny, D., Seth, A., Djordjevic, B., Nofech-Mozes, S., and Parra-Herran, C. (2021). CTNNB1 mutations and aberrant β-catenin expression in ovarian endometrioid carcinoma: correlation with patient outcome. Am. J. Surg. Pathol. 45, 68-76. https://doi.org/10.1097/PAS.0000000000001553