DOI QR코드

DOI QR Code

The Short-Chain Fatty Acid Receptor GPR43 Modulates YAP/TAZ via RhoA

  • Park, Bi-Oh (Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Kim, Seong Heon (Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Kim, Jong Hwan (Personalized Genomic Medicine Research Center, KRIBB) ;
  • Kim, Seon-Young (Personalized Genomic Medicine Research Center, KRIBB) ;
  • Park, Byoung Chul (Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Han, Sang-Bae (College of Pharmacy, Chungbuk National University) ;
  • Park, Sung Goo (Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Kim, Jeong-Hoon (Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Kim, Sunhong (Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
  • Received : 2021.01.30
  • Accepted : 2021.05.27
  • Published : 2021.07.31

Abstract

GPR43 (also known as FFAR2 or FFA2) is a G-protein-coupled receptor primarily expressed in immune cells, enteroendocrine cells and adipocytes that recognizes short-chain fatty acids, such as acetate, propionate, and butyrate, likely to be implicated in innate immunity and host energy homeostasis. Activated GPR43 suppresses the cAMP level and induces Ca2+ flux via coupling to Gαi and Gαq families, respectively. Additionally, GPR43 is reported to facilitate phosphorylation of ERK through G-protein-dependent pathways and interacts with β-arrestin 2 to inhibit NF-κB signaling. However, other G-protein-dependent and independent signaling pathways involving GPR43 remain to be established. Here, we have demonstrated that GPR43 augments Rho GTPase signaling. Acetate and a synthetic agonist effectively activated RhoA and stabilized YAP/TAZ transcriptional coactivators through interactions of GPR43 with Gαq/11 and Gα12/13. Acetate-induced nuclear accumulation of YAP was blocked by a GPR43-specific inverse agonist. The target genes induced by YAP/TAZ were further regulated by GPR43. Moreover, in THP-1-derived M1-like macrophage cells, the Rho-YAP/TAZ pathway was activated by acetate and a synthetic agonist. Our collective findings suggest that GPR43 acts as a mediator of the Rho-YAP/TAZ pathway.

Keywords

Acknowledgement

This work was supported by a grant (NRF-2019M3E5D4069882) from the National Research Foundation, Ministry of Science and ICT and Future Planning, and a grant from the KRIBB Initiative Program.

References

  1. Agus, A., Denizot, J., Thevenot, J., Martinez-Medina, M., Massier, S., Sauvanet, P., Bernalier-Donadille, A., Denis, S., Hofman, P., Bonnet, R., et al. (2016). Western diet induces a shift in microbiota composition enhancing susceptibility to Adherent-Invasive E. coli infection and intestinal inflammation. Sci. Rep. 6, 19032. https://doi.org/10.1038/srep19032
  2. Ang, Z., Er, J.Z., Tan, N.S., Lu, J., Liou, Y.C., Grosse, J., and Ding, J.L. (2016). Human and mouse monocytes display distinct signalling and cytokine profiles upon stimulation with FFAR2/FFAR3 short-chain fatty acid receptor agonists. Sci. Rep. 6, 34145. https://doi.org/10.1038/srep34145
  3. Barker, G., Davenport, R., Downham, R., Farnaby, W., Goldby, A., Hannah, D., Harrison, D., and Willems, H. (2015). 3-SUBSTITUTED 2-AMINOINDOLE DERIVATIVES. WIPO WO 2015/198045 A1.
  4. Brown, A.J., Goldsworthy, S.M., Barnes, A.A., Eilert, M.M., Tcheang, L., Daniels, D., Muir, A.I., Wigglesworth, M.J., Kinghorn, I., Fraser, N.J., et al. (2003). The Orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J. Biol. Chem. 278, 11312-11319. https://doi.org/10.1074/jbc.M211609200
  5. Chanput, W., Mes, J.J., Savelkoul, H.F., and Wichers, H.J. (2013). Characterization of polarized THP-1 macrophages and polarizing ability of LPS and food compounds. Food Funct. 4, 266-276. https://doi.org/10.1039/C2FO30156C
  6. Cheng, Z., Garvin, D., Paguio, A., Stecha, P., Wood, K., and Fan, F. (2010). Luciferase reporter assay system for deciphering GPCR pathways. Curr. Chem. Genomics 4, 84-91. https://doi.org/10.2174/1875397301004010084
  7. Corley, S.M., Mendoza-Reinoso, V., Giles, N., Singer, E.S., Common, J.E., Wilkins, M.R., and Beverdam, A. (2018). Plau and Tgfbr3 are YAP-regulated genes that promote keratinocyte proliferation. Cell Death Dis. 9, 1106. https://doi.org/10.1038/s41419-018-1141-5
  8. Dobin, A., Davis, C.A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P., Chaisson, M., and Gingeras, T.R. (2013). STAR: ultrafast universal RNAseq aligner. Bioinformatics 29, 15-21. https://doi.org/10.1093/bioinformatics/bts635
  9. Dong, J., Feldmann, G., Huang, J., Wu, S., Zhang, N., Comerford, S.A., Gayyed, M.F., Anders, R.A., Maitra, A., and Pan, D. (2007). Elucidation of a universal size-control mechanism in Drosophila and mammals. Cell 130, 1120-1133. https://doi.org/10.1016/j.cell.2007.07.019
  10. Dupont, S., Morsut, L., Aragona, M., Enzo, E., Giulitti, S., Cordenonsi, M., Zanconato, F., Le Digabel, J., Forcato, M., Bicciato, S., et al. (2011). Role of YAP/TAZ in mechanotransduction. Nature 474, 179-183. https://doi.org/10.1038/nature10137
  11. Gadepalli, R., Kotla, S., Heckle, M.R., Verma, S.K., Singh, N.K., and Rao, G.N. (2013). Novel role for p21-activated kinase 2 in thrombin-induced monocyte migration. J. Biol. Chem. 288, 30815-30831. https://doi.org/10.1074/jbc.M113.463414
  12. Hao, Y., Chun, A., Cheung, K., Rashidi, B., and Yang, X. (2008). Tumor suppressor LATS1 is a negative regulator of oncogene YAP. J. Biol. Chem. 283, 5496-5509. https://doi.org/10.1074/jbc.M709037200
  13. He, X.Y., Xiang, C., Zhang, C.X., Xie, Y.Y., Chen, L., Zhang, G.X., Lu, Y., and Liu, G. (2015). p53 in the myeloid lineage modulates an inflammatory microenvironment limiting initiation and invasion of intestinal tumors. Cell Rep. 13, 888-897. https://doi.org/10.1016/j.celrep.2015.09.045
  14. Hoj, J.P., Mayro, B., and Pendergast, A.M. (2019). A TAZ-AXL-ABL2 feedforward signaling axis promotes lung adenocarcinoma brain metastasis. Cell Rep. 29, 3421-3434.e8. https://doi.org/10.1016/j.celrep.2019.11.018
  15. Ito, T., Matsubara, D., Tanaka, I., Makiya, K., Tanei, Z.I., Kumagai, Y., Shiu, S.J., Nakaoka, H.J., Ishikawa, S., Isagawa, T., et al. (2016). Loss of YAP1 defines neuroendocrine differentiation of lung tumors. Cancer Sci. 107, 1527-1538. https://doi.org/10.1111/cas.13013
  16. Karaki, S., Mitsui, R., Hayashi, H., Kato, I., Sugiya, H., Iwanaga, T., Furness, J.B., and Kuwahara, A. (2006). Short-chain fatty acid receptor, GPR43, is expressed by enteroendocrine cells and mucosal mast cells in rat intestine. Cell Tissue Res. 324, 353-360. https://doi.org/10.1007/s00441-005-0140-x
  17. Kim, M.H., Kang, S.G., Park, J.H., Yanagisawa, M., and Kim, C.H. (2013). Short-chain fatty acids activate GPR41 and GPR43 on intestinal epithelial cells to promote inflammatory responses in mice. Gastroenterology 145, 396-406.e10. https://doi.org/10.1053/j.gastro.2013.04.056
  18. Kim, N.G., Koh, E., Chen, X., and Gumbiner, B.M. (2011). E-cadherin mediates contact inhibition of proliferation through Hippo signaling-pathway components. Proc. Natl. Acad. Sci. U. S. A. 108, 11930-11935. https://doi.org/10.1073/pnas.1103345108
  19. Kimura, I., Ozawa, K., Inoue, D., Imamura, T., Kimura, K., Maeda, T., Terasawa, K., Kashihara, D., Hirano, K., Tani, T., et al. (2013). The gut microbiota suppresses insulin-mediated fat accumulation via the shortchain fatty acid receptor GPR43. Nat. Commun. 4, 1829. https://doi.org/10.1038/ncomms2852
  20. Le Poul, E., Loison, C., Struyf, S., Springael, J.Y., Lannoy, V., Decobecq, M.E., Brezillon, S., Dupriez, V., Vassart, G., Van Damme, J., et al. (2003). Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation. J. Biol. Chem. 278, 25481-25489. https://doi.org/10.1074/jbc.M301403200
  21. Lee, S.U., In, H.J., Kwon, M.S., Park, B.O., Jo, M., Kim, M.O., Cho, S., Lee, S., Lee, H.J., Kwak, Y.S., et al. (2013). beta-Arrestin 2 mediates G proteincoupled receptor 43 signals to nuclear factor-kappaB. Biol. Pharm. Bull. 36, 1754-1759. https://doi.org/10.1248/bpb.b13-00312
  22. Lei, Q.Y., Zhang, H., Zhao, B., Zha, Z.Y., Bai, F., Pei, X.H., Zhao, S., Xiong, Y., and Guan, K.L. (2008). TAZ promotes cell proliferation and epithelialmesenchymal transition and is inhibited by the hippo pathway. Mol. Cell. Biol. 28, 2426-2436. https://doi.org/10.1128/MCB.01874-07
  23. Ma, B., Chen, Y., Chen, L., Cheng, H., Mu, C., Li, J., Gao, R., Zhou, C., Cao, L., Liu, J., et al. (2015). Hypoxia regulates Hippo signalling through the SIAH2 ubiquitin E3 ligase. Nat. Cell Biol. 17, 95-103. https://doi.org/10.1038/ncb3073
  24. Ma, X., Zhao, Y., Daaka, Y., and Nie, Z. (2012). Acute activation of beta2-adrenergic receptor regulates focal adhesions through betaArrestin2-and p115RhoGEF protein-mediated activation of RhoA. J. Biol. Chem. 287, 18925-18936. https://doi.org/10.1074/jbc.M112.352260
  25. Macia, L., Tan, J., Vieira, A.T., Leach, K., Stanley, D., Luong, S., Maruya, M., Ian McKenzie, C., Hijikata, A., Wong, C., et al. (2015). Metabolite-sensing receptors GPR43 and GPR109A facilitate dietary fibre-induced gut homeostasis through regulation of the inflammasome. Nat. Commun. 6, 6734. https://doi.org/10.1038/ncomms7734
  26. Mahoney, J.E., Mori, M., Szymaniak, A.D., Varelas, X., and Cardoso, W.V. (2014). The hippo pathway effector Yap controls patterning and differentiation of airway epithelial progenitors. Dev. Cell 30, 137-150. https://doi.org/10.1016/j.devcel.2014.06.003
  27. Maslowski, K.M., Vieira, A.T., Ng, A., Kranich, J., Sierro, F., Yu, D., Schilter, H.C., Rolph, M.S., Mackay, F., Artis, D., et al. (2009). Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 461, 1282-1286. https://doi.org/10.1038/nature08530
  28. Masui, R., Sasaki, M., Funaki, Y., Ogasawara, N., Mizuno, M., Iida, A., Izawa, S., Kondo, Y., Ito, Y., Tamura, Y., et al. (2013). G protein-coupled receptor 43 moderates gut inflammation through cytokine regulation from mononuclear cells. Inflamm. Bowel Dis. 19, 2848-2856. https://doi.org/10.1097/01.MIB.0000435444.14860.ea
  29. McCarthy, D.J., Chen, Y., and Smyth, G.K. (2012). Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Res. 40, 4288-4297. https://doi.org/10.1093/nar/gks042
  30. Mo, J.S., Yu, F.X., Gong, R., Brown, J.H., and Guan, K.L. (2012). Regulation of the Hippo-YAP pathway by protease-activated receptors (PARs). Genes Dev. 26, 2138-2143. https://doi.org/10.1101/gad.197582.112
  31. Moon, K.H. and Kim, J.W. (2018). Hippo signaling circuit and divergent tissue growth in mammalian eye. Mol. Cells 41, 257-263. https://doi.org/10.14348/MOLCELLS.2018.0091
  32. Moroishi, T., Park, H.W., Qin, B., Chen, Q., Meng, Z., Plouffe, S.W., Taniguchi, K., Yu, F.X., Karin, M., Pan, D., et al. (2015). A YAP/TAZ-induced feedback mechanism regulates Hippo pathway homeostasis. Genes Dev. 29, 1271-1284. https://doi.org/10.1101/gad.262816.115
  33. Nilsson, N.E., Kotarsky, K., Owman, C., and Olde, B. (2003). Identification of a free fatty acid receptor, FFA2R, expressed on leukocytes and activated by short-chain fatty acids. Biochem. Biophys. Res. Commun. 303, 1047-1052. https://doi.org/10.1016/S0006-291X(03)00488-1
  34. Park, H.W., Kim, Y.C., Yu, B., Moroishi, T., Mo, J.S., Plouffe, S.W., Meng, Z., Lin, K.C., Yu, F.X., Alexander, C.M., et al. (2015). Alternative Wnt signaling activates YAP/TAZ. Cell 162, 780-794. https://doi.org/10.1016/j.cell.2015.07.013
  35. Priyadarshini, M., Villa, S.R., Fuller, M., Wicksteed, B., Mackay, C.R., Alquier, T., Poitout, V., Mancebo, H., Mirmira, R.G., Gilchrist, A., et al. (2015). An acetate-specific GPCR, FFAR2, regulates insulin secretion. Mol. Endocrinol. 29, 1055-1066. https://doi.org/10.1210/me.2015-1007
  36. Schmittgen, T.D. and Livak, K.J. (2008). Analyzing real-time PCR data by the comparative C(T) method. Nat. Protoc. 3, 1101-1108. https://doi.org/10.1038/nprot.2008.73
  37. Shreberk-Shaked, M. and Oren, M. (2019). New insights into YAP/TAZ nucleo-cytoplasmic shuttling: new cancer therapeutic opportunities? Mol. Oncol. 13, 1335-1341. https://doi.org/10.1002/1878-0261.12498
  38. Sina, C., Gavrilova, O., Forster, M., Till, A., Derer, S., Hildebrand, F., Raabe, B., Chalaris, A., Scheller, J., Rehmann, A., et al. (2009). G protein-coupled receptor 43 is essential for neutrophil recruitment during intestinal inflammation. J. Immunol. 183, 7514-7522. https://doi.org/10.4049/jimmunol.0900063
  39. Taniguchi, K., Wu, L.W., Grivennikov, S.I., de Jong, P.R., Lian, I., Yu, F.X., Wang, K., Ho, S.B., Boland, B.S., Chang, J.T., et al. (2015). A gp130-Src-YAP module links inflammation to epithelial regeneration. Nature 519, 57-62. https://doi.org/10.1038/nature14228
  40. Tedelind, S., Westberg, F., Kjerrulf, M., and Vidal, A. (2007). Antiinflammatory properties of the short-chain fatty acids acetate and propionate: a study with relevance to inflammatory bowel disease. World J. Gastroenterol. 13, 2826-2832. https://doi.org/10.3748/wjg.v13.i20.2826
  41. Vaque, J.P., Dorsam, R.T., Feng, X., Iglesias-Bartolome, R., Forsthoefel, D.J., Chen, Q., Debant, A., Seeger, M.A., Ksander, B.R., Teramoto, H., et al. (2013). A genome-wide RNAi screen reveals a Trio-regulated Rho GTPase circuitry transducing mitogenic signals initiated by G protein-coupled receptors. Mol. Cell 49, 94-108. https://doi.org/10.1016/j.molcel.2012.10.018
  42. Vinolo, M.A., Ferguson, G.J., Kulkarni, S., Damoulakis, G., Anderson, K., Bohlooly, Y.M., Stephens, L., Hawkins, P.T., and Curi, R. (2011). SCFAs induce mouse neutrophil chemotaxis through the GPR43 receptor. PLoS One 6, e21205. https://doi.org/10.1371/journal.pone.0021205
  43. Waldecker, M., Kautenburger, T., Daumann, H., Busch, C., and Schrenk, D. (2008). Inhibition of histone-deacetylase activity by short-chain fatty acids and some polyphenol metabolites formed in the colon. J. Nutr. Biochem. 19, 587-593. https://doi.org/10.1016/j.jnutbio.2007.08.002
  44. Wang, Y., Xu, X., Maglic, D., Dill, M.T., Mojumdar, K., Ng, P.K., Jeong, K.J., Tsang, Y.H., Moreno, D., Bhavana, V.H., et al. (2018). Comprehensive molecular characterization of the Hippo signaling pathway in cancer. Cell Rep. 25, 1304-1317.e5. https://doi.org/10.1016/j.celrep.2018.10.001
  45. Wu, H., Wei, L., Fan, F., Ji, S., Zhang, S., Geng, J., Hong, L., Fan, X., Chen, Q., Tian, J., et al. (2015). Integration of Hippo signalling and the unfolded protein response to restrain liver overgrowth and tumorigenesis. Nat. Commun. 6, 6239. https://doi.org/10.1038/ncomms7239
  46. Yu, F.X., Zhao, B., Panupinthu, N., Jewell, J.L., Lian, I., Wang, L.H., Zhao, J., Yuan, H., Tumaneng, K., Li, H., et al. (2012). Regulation of the Hippo-YAP pathway by G-protein-coupled receptor signaling. Cell 150, 780-791. https://doi.org/10.1016/j.cell.2012.06.037
  47. Zanconato, F., Forcato, M., Battilana, G., Azzolin, L., Quaranta, E., Bodega, B., Rosato, A., Bicciato, S., Cordenonsi, M., and Piccolo, S. (2015). Genomewide association between YAP/TAZ/TEAD and AP-1 at enhancers drives oncogenic growth. Nat. Cell Biol. 17, 1218-1227. https://doi.org/10.1038/ncb3216
  48. Zhao, B., Ye, X., Yu, J., Li, L., Li, W., Li, S., Yu, J., Lin, J.D., Wang, C.Y., Chinnaiyan, A.M., et al. (2008). TEAD mediates YAP-dependent gene induction and growth control. Genes Dev. 22, 1962-1971. https://doi.org/10.1101/gad.1664408
  49. Zhou, X., Li, W., Wang, S., Zhang, P., Wang, Q., Xiao, J., Zhang, C., Zheng, X., Xu, X., Xue, S., et al. (2019). YAP aggravates inflammatory bowel disease by regulating M1/M2 macrophage polarization and gut microbial homeostasis. Cell Rep. 27, 1176-1189.e5. https://doi.org/10.1016/j.celrep.2019.03.028

Cited by

  1. Biological Function of Short-Chain Fatty Acids and Its Regulation on Intestinal Health of Poultry vol.8, 2021, https://doi.org/10.3389/fvets.2021.736739