DOI QR코드

DOI QR Code

소나 플랫폼의 운동 파라미터에 따른 합성개구소나 영상 왜곡의 정량적 분석

A quantitative analysis of synthetic aperture sonar image distortion according to sonar platform motion parameters

  • 김시문 (한국해양과학기술원 부설 선박해양플랜트연구소 해양시스템연구본부) ;
  • 변성훈 (한국해양과학기술원 부설 선박해양플랜트연구소 해양시스템연구본부)
  • 투고 : 2021.04.25
  • 심사 : 2021.06.10
  • 발행 : 2021.07.31

초록

해저면 영상을 취득하기 위해 측면주사소나나 다중빔측심기 외에도 합성개구소나가 상용화되어 널리 사용되고 있으며 국내에서도 예인형 시스템 개발 등 관련 연구가 진행 중에 있다. 고해상도의 합성개구소나 영상을 얻기 위해서는 이를 탑재하고 있는 플랫폼의 운동을 정확하게 추정하는 것이 필요하며 이를 위해 정밀한 수중항법 시스템이 요구되고 있다. 본 논문에서는 합성개구소나를 탑재하고 있는 플랫폼의 운동 특성에 따라 소나 영상의 왜곡이 얼마나 발생하는지 정량적으로 분석함으로써 요구되는 항법 정확도와 항법센서의 정밀도를 설정하는데 있어서 기준이 되는 자료를 제공하고자 한다. 총 다섯가지의 운동을 고려하고 있으며 정량적 분석을 위해 정규화된 평균 제곱근 오차를 정의한다. 각 운동 특성의 변수값 변화에 따른 오차 분석 수치해석을 통해 yaw and sway 운동이 가장 큰 영상 왜곡을 야기하며 pitch and heave 운동의 영향은 크지 않음을 확인하였다.

Synthetic aperture sonars as well as side scan sonars or multibeam echo sounders have been commercialized and are widely used for seafloor imaging. In Korea related research such as the development of a towed synthetic aperture sonar system is underway. In order to obtain high-resolution synthetic aperture sonar images, it is necessary to accurately estimate the platform motion on which it is installed, and a precise underwater navigation system is required. In this paper we are going to provide reference data for determining the required navigation accuracy and precision of navigation sensors by quantitatively analyzing how much distortion of the sonar images occurs according to motion characteristics of the platform equipped with the synthetic aperture sonar. Five types of motions are considered and normalized root mean square error is defined for quantitative analysis. Simulation for error analysis with parameter variation of motion characteristics results in that yaw and sway motion causes the largest image distortion whereas the effect of pitch and heave motion is not significant.

키워드

과제정보

본 논문은 한국해양과학기술원 부설 선박해양플랜트연구소의 주요사업(계정번호: PES4000)으로 수행한 연구과제 결과 중 일부이다.

참고문헌

  1. Kongsberg Maritime, Synthetic Aperture Sonar - HISAS, https://www.kongsberg.com/maritime/products/mapping-systems/mapping-systems/sonars/SAS/, (Last viewed July 2, 2021).
  2. Kraken Robotics, Synthetic aperture Sonar AquaPix MINSAS, https://krakenrobotics.com/products/synthetic-aperture-sonar/, (Last viewed July 2, 2021).
  3. iXblue, Sams Series, https://www.ixblue.com/products/sams-series, (Last viewed July 2, 2021).
  4. T. LeBlanc, "Overview of low frequency wideband research," DRDC Rep., 2017.
  5. G. Beckers, R. van Vossen, and G. Vlaming, "Low-frequency synthetic aperture sonar for detecting explosives in harbors," Sea Tech. 2012.
  6. M. Soumekh, Synthetic Aperture Radar Signal Processing with MATLAB Algorithms (John Wiley & Sons, New York, 1999), pp. 198-215.
  7. G. Franceschetti and R. Lanari, Synthetic Aperture Radar Processing (CRC Press LLC, Boca Raton, 1999), pp. 9-13.
  8. R. E. Hansen, "Introduction to Synthetic Aperture Sonar," in Sonar Systems, edited by N. Kolev (InTech, Available from: http://www.intechopen.com/books/sonarsystems/, 2011).
  9. M. P. Hayes and P. T. Gough, "Synthetic aperture sonar: a review of current status," IEEE J. Oceanic Engineering, 34, 207-224 (2009). https://doi.org/10.1109/JOE.2009.2020853
  10. T. O. Saebo, Seafloor depth estimation by means of interferometric synthetic aperture sonar, (Ph. D. Thesis, University of Tromso, 2010).
  11. A. Hyun, A study on motion compensation for synthetic aperture sonar based on sub-aperture (in Korean), (Master Thesis, Seoul National University, 2011).
  12. S.-M. Kim, S.-H. Byun, and S. Oh, "An analysis of the moving speed effect of the receiver array on the passive synthetic aperture siganl processing" (in Korean), J. Acous. Soc. Kr. 35, 125-133 (2016). https://doi.org/10.7776/ASK.2016.35.2.125
  13. A. Hyun and W. Seong, "Multipath reduction for synthetic aperture sonar interferometry with 2xN array elements," Proc. Int. Conf. on SAS and SAR, 130-137 (2014).
  14. J.-E. Lee, Y.-S. Oh, S.-S. Park, and H.-S. Kim, "Development of towed synthetic aperture sonar system" (in Korean), J. of the KNST, 2, 28-31 (2019). https://doi.org/10.31818/JKNST.2019.03.2.1.28
  15. FiberPro, Inertial Measurement Unit, https://fiberpro.co.kr/product/inertialMeasurementUnit/inertialMeasurementUnitSecondDepth, (Last viewed July 2, 2021).
  16. Honeywell, Compare Our Inertial Measurement Units, https://aerospace.honeywell.com/en/learn/products/sensors/inertial-measurement-units, (Last viewed July 2, 2021).
  17. S.-M. Kim and S.-H. Byun, "Development of MATLAB program for the simulation of received signals of a synthetic aperture sonar with arbitrary motion" (in Korean), J. Acoust. Soc. Kr. Supple.2(s) 39, 55 (2020).