DOI QR코드

DOI QR Code

Effect on Nitrous Oxide Emission in Applying Livestock Manure Compost for Strawberry (Fragaria × ananassa Duch.) Cultivation in Plastic Film House

딸기(Fragaria × ananassa Duch.) 시설재배에서 가축분 퇴비 시용이 아산화질소 배출에 미치는 영향

  • 이창규 (전라북도농업기술원 농업환경과, 원광대학교 생물환경화학과) ;
  • 문형철 (전라북도농업기술원 농업환경과) ;
  • 송은주 (전라북도농업기술원 농업환경과) ;
  • 최선우 (전라북도농업기술원 농업환경과) ;
  • 고도영 (전라북도농업기술원 농업환경과) ;
  • 전형권 (전라북도농업기술원 농업환경과) ;
  • 윤석인 (원광대학교 생물환경화학과)
  • Received : 2020.12.29
  • Accepted : 2021.02.19
  • Published : 2021.02.27

Abstract

This study was conducted to investigate the growth characteristics of strawberries and N2O emission by treating the compost for each type of livestock manure, which was an organic farming material, as a basal fertilization in plastic film house. Livestock manure compost, which made from cattle manure, swine manure, and poultry manure as raw materials, were applied to this experiment, treated by mixing or single on the basis of nitrogen content with the standard amount of fertilizer for strawberries. Total emission of N2O were 10.7% higher than those in poultry manure compost treatment compared to the inorganic fertilizer treatment, but 16.5~41.9% lower than those in other livestock manure compost treatment. The period of N2O emission mainly was up to the 17th day after fertilizer application, accounting for 70~87% of the total amount of discharge, and 13~30% of the total amount was emitted for 158 days later. N2O emission was decreased significantly NH4+-N content in the soil, and increased NO3--N. As compared with control, the number of leaves, leaf width and crown diameter of livestock manure compost treatments were not significantly different, leaf length of cattle+poultry, cattle+ swine, swine+poultry treatment higher, and SPAD (soil plant analysis development) values of cattle+poultry treatment highest. There was no significant difference in weight and sugar content of strawberry fruits among treatments.

시설재배지에서 토양 양분으로 유기농업자재인 가축분 종류별 퇴비를 밑거름으로 처리한 후 발생하는 N2O와 딸기의 생육 특성을 조사하기 위해 본 연구를 수행하였다. 가축분퇴비는 돈분과 우분, 계분을 원료로 하여 각각 만들어진 제품을 사용하였고, 딸기 표준시비량의 질소를 기준으로 단독 그리고 혼합 처리하였다. N2O의 총배출량은 무기질비료 처리구와 비교하여 계분퇴비 처리구에서 10.7% 많았으나 다른 가축분퇴비 처리구에서는 16.5~41.9% 적게 배출되었다. N2O가 주로 배출되는 기간은 비료살포 후 17일차까지로 전체 배출량의 70~87%를 차지하였고, 이후 158일간 13~30%가 발생하였다. N2O 배출량은 토양의 NH4+-N 함량과 부의 상관성을 나타내었다. 딸기의 생육 중 엽수, 엽폭, 관부직경은 처리구간 유의한 차이를 보이지 않았고, 엽장은 무기질비료 처리구보다 가축분퇴비 처리구에서 컸으며, SPAD 값은 우분퇴비와 계분퇴비를 혼합하여 시용한 처리구에서 가장 높았다. 딸기 과실의 무게와 당도는 처리구간 유의한 차이를 보이지 않았다.

Keywords

References

  1. Agricultural Weather Information Service. http://weather.rda.go.kr
  2. Brady, N. C. and R. R. Weil. 2010. Elements of the nature and properties of soils. third edition. Pearson. USA. p. 366.
  3. Choi, E. J., G. Y. Kim, S. I. Lee, H. C. Jeong, J. S. Lee, H. S. Gwon, and T. K. Oh. 2019. Estimation of nitrous oxide emission from different livestock manure composts applied to cropland. J. Climate Change Res. 10(4): 325-332. https://doi.org/10.15531/ksccr.2019.10.4.325
  4. Godde, M. and R. Conrad. 1999. Immediate and adaptational temperature effects on nitric oxide production and nitrous oxide release from nitrification and denitrification in two soils. Biol. Fertil. Soils. 30(1): 33-40. https://doi.org/10.1007/s003740050584
  5. Greenhouse Gas Inventory and Research Center (GIR). 2019. National greenhouse gas inventory report of Korea.
  6. Hellebrand, H. J., V. Scholz, and J. Kern. 2008. Fertilizer induced nitrous oxide emissions during energy crop cultivation on loamy sand soils. Atmos. Environ. 42(36): 8403-8411. https://doi.org/10.1016/j.atmosenv.2008.08.006
  7. Hutchinson, G. L. and G. P. Livingston. 1993. Use of chamber systems to measure trace gas fluxes. Agricultural ecosystem effects on trace gases and global climate change. 55(1): 63-78.
  8. Hyun, J. G., S. Y. Yoo, X. Y. Yang, J. E. Lee, and G. Y. Yoo. 2017. Annual variability in nitrous oxide emission from agricultural field soils. J.Climate Change Res. 8(4): 305-312. https://doi.org/10.15531/ksccr.2017.8.4.305
  9. IPCC. 1996. Revised IPCC guideline for national greenhouse gas inventories: Reference manual, revised in 1996. Intergovernmental Panel on Climate Change. Geneva, Switzerland.
  10. IPCC. 2007. Climate change 2007. The physical science basis: Summary for policymakers. Intergovernmental Panel on Climate Change. Geneva, Switzerland.
  11. Kim, G. Y., B. H. Song, K. A. Roh, S. Y. Hong, B. G. Ko, K. M. Shim, and K. H. So. 2008. Evaluation of green house gases emissions according to changes of soil water content, soil temperature and mineral N with different soil texture in pepper cultivation. Korean J. Soil Sci. Fert. 41(6): 399-407.
  12. Kim, G. Y., H. C. Jeong, K. M. Shim, S. B. Lee, and D. B. Lee. 2011. Evaluation of N2O emissions with different growing periods (spring and autumn seasons), tillage and no tillage conditions in a chinese cabbage field. Korean J. Soil Sci. Fert. 44(6): 1239-1244. https://doi.org/10.7745/KJSSF.2011.44.6.1239
  13. Kim, G. Y., S. I. Lee, J. S. Lee, H. C. Jeong, and E. J. Choi. 2018a. Evaluation of N2O emissions by nutrient source in soybean and pepper fields. Korean J. Environ. Biol. 36(4): 680-686. https://doi.org/10.11626/KJEB.2018.36.4.680
  14. Kim, S. U., C. Ruangcharus, H. H. Lee, H. J. Park, and C. O. Hong. 2018b. Effect of application rate of composted animal manure on nitrous oxide emission from upland soil supporting for sweet potato. Korean J Environ Agric. 37(3): 172-178. https://doi.org/10.5338/KJEA.2018.37.3.28
  15. Lesschen, J. P., G. L. Velthof, W. Vries, and J. Kros. 2011. Differentiation of nitrous oxide emission factors for agricultural soils. Environmental Pollution. 159(11): 3215-3222. https://doi.org/10.1016/j.envpol.2011.04.001
  16. Lee, S. I., G. Y. Kim, E. J. Choi, J. S. Lee, and H. C. Jung. 2017. Decreases nitrous oxide emission and increase soil carbon via carbonized biomass application of orchard soil. Korean J. Environ Agric. 36(2): 73-79. https://doi.org/10.5338/KJEA.2017.36.2.13
  17. Lee, S. I., G. Y. Kim, E. J. Choi, J. S. Lee, and H. C. Jung. 2018. Reduction of carbon dioxide and nitrous oxide emissions through various biochars application in the upland. Journal of the Korea Organic Resources Recycling Association. 26(2): 11-18.
  18. Park, W. K., G. Y. Kim, S. I. Lee, J. D. Shin, H. Y. Jang, U. S. Na, and K.H. So. 2015. Effects of biomass application on soil carbon storage and mitigation of GHGs emission in upland. Korean J. Soil Sci. Fert. 48(5): 340-350. https://doi.org/10.7745/KJSSF.2015.48.5.340
  19. Yagi, K. 1991. Emission of biogenic gas compounds from soil ecosystem and effect of global environment. 2. Methane emission from paddy fields. Soil and Fert. Japan. 62(5): 556-562.