DOI QR코드

DOI QR Code

Study on the damping mechanisms of a suspended particle damper attached to a wind turbine tower

  • Ma, Chenzhi (College of Civil Engineering, Tongji University) ;
  • Lu, Zheng (College of Civil Engineering, Tongji University) ;
  • Wang, Dianchao (College of Civil Engineering, Tongji University) ;
  • Wang, Zixin (College of Civil Engineering, Tongji University)
  • 투고 : 2020.11.23
  • 심사 : 2021.07.17
  • 발행 : 2021.07.25

초록

Intensive attention has been given to mitigating the dynamic responses of wind turbine towers (WTs) under wind and seismic excitations to ensure their safety and serviceability. This study details the damping mechanisms of a suspended particle damper (suspended PD) on the vibration control of a horizontal-axis WT. This damper combines the benefits of a tuned mass damper (TMD) and fixed PD, and can be effective without an external damping system. It therefore is a more practical solution for the vibration control of a WT. In this study, a finite element WT is built, and two damper systems with a TMD and suspended PD are modeled and compared. Ground motions and strong lateral winds are applied as external excitations to the operational and parked turbines, respectively. A full factorial study using a statistical method is conducted to determine the interaction effects of key parameters of the suspended PD. Results show that the damping effectiveness of a suspended PD is not sensitive to the external damping system under specific parameters, and it can be effective in detuned cases. Finally, a comparison between the optimal TMD and suspended PD on the vibration control of a WT is performed. The comparative results indicate that the performance of the suspended PD is considerably more robust than the TMD in wind-seismic excitations.

키워드

과제정보

Financial support from the National Natural Science Foundation of China (Grant Nos. 51922080) is highly appreciated. This work is also supported by Program of Shanghai Academic Research Leader (20XD1423900) and the Fundamental Research Funds for the Central Government Supported Universities (11080).

참고문헌

  1. Alkmim, M.H., Fabro, A.T. and de Morais, M.V.G. (2018), "Optimization of a tuned liquid column damper subject to an arbitrary stochastic wind", J. Braz Soc. Mech. Sci., 40(11). https://doi.org/10.1007/s40430-018-1471-3.
  2. Bannerman, M.N., Kollmer, J.E., Sack, A., Heckel, M., Mueller, P. and Poschel, T. (2011), "Movers and shakers: granular damping in microgravity", Phys. Rev. E. Stat. Nonlin. Soft Matter. Phys., 84(1Pt1), 011301. https://doi.org/10.1103/PhysRevE.84.011301.
  3. Box, G.E., Hunter, W.H. and Hunter, S. (1978), Statistics for Experimenters, John Wiley and sons New York
  4. Chung, L.L., Lai, Y.A., Yang, C.S.W., Lien, K.H. and Wu, L.Y. (2013), "Semi-active tuned mass dampers with phase control", J Sound Vib. 332(15), 3610-3625. https://doi.org/10.1016/j.jsv.2013.02.008.
  5. Dai, K., Mao, Z., Zhao, Z., Wang, Y., Meng, J. and Zhao, C.J.A.E.S. (2018), "Shaking table test study on seismic responses of a wind turbine under ground motions with different spectral characteristics", Advan. Eng. Sci.. 50(03), 125-133. https://doi.org/10.15961/j.jsuese.201800369.
  6. De Angelis, M., Perno, S. and Reggio, A. (2012), "Dynamic response and optimal design of structures with large mass ratio TMD", Earthq. Eng. Struct. Dyn., 41(1), 41-60. https://doi.org/10.1002/eqe.1117.
  7. Gattulli, V., Di Fabio, F. and Luongo, A. (2004), "Nonlinear tuned mass damper for self-excited oscillations", Wind Struct. 7(4), 251-264. https://doi.org/10.12989/was.2004.7.4.251.
  8. GB50009-2012 (2012), Load Code for the Design of Building Structures, China National Standard (CNS); Haidian District, Beijing, China.
  9. Ghorbani-Tanha, A.K., Noorzad, A. and Rahimian, M. (2009), "Mitigation of Wind-Induced Motion of Milad Tower by Tuned Mass Damper", Struct. Des Tall Spec., 18(4), 371-385. https://doi.org/10.1002/tal.421.
  10. Haskett, T., Breukelman, B., Robinson, J. and Kottelenberg, J. (2003), Tuned-mass Damper under Excessive Structural Excitation, Guelph, Ontario, Canada N1K 1B8.
  11. He, J., Jin, X., Xie, S.Y., Cao, L., Lin, Y.F. and Wang, N. (2019), "Multi-body dynamics modeling and TMD optimization based on the improved AFSA for floating wind turbines", Renew. Energ. 141, 305-321. https://doi.org/10.1016/j.renene.2019.04.005.
  12. IEC61400-1 (2005), WindTurbines-Part 1: Design requirements, International Electrotechnical Commission; Geneva, Switzerland.
  13. Jonkman, J. and Jonkman, B. (2016), "NWTC information portal (FAST v8)", last modified 23-September-2015.
  14. Lalonde, E.R., Dai, K.S., Bitsuamlak, G., Lu, W.S. and Zhao, Z. (2020), "Comparison of semi-active and passive tuned mass damper systems for vibration control of a wind turbine", Wind Struct., 30(6), 663-678. https://doi.org/10.12989/was.2020.30.6.663.
  15. Leung, A.Y.T., Zhang, H.J., Cheng, C.C. and Lee, Y.Y. (2008), "Particle swarm optimization of TMD by nonstationary base excitation during earthquake", Earthq. Eng. Struct. Dyn., 37(9), 1223-1246. https://doi.org/10.1002/eqe.811.
  16. Liu, W., Tomlinson, G.R. and Rongong, J.A. (2005), "The dynamic characterisation of disk geometry particle dampers", J. Sound Vib., 280(3-5), 849-861. https://doi.org/10.1016/j.jsv.2003.12.047.
  17. Lu, X.L., Zhang, Q., Weng, D.G., Zhou, Z.G., Wang, S.S., Mahin, S.A., Ding, S.W. and Qian, F. (2017a), "Improving performance of a super tall building using a new eddy-current tuned mass damper", Struct Control Hlth. 24(3). https://doi.org/10.1002/stc.1882.
  18. Lu, Z., Chen, X.Y., Zhang, D.C. and Dai, K.S. (2017b), "Experimental and analytical study on the performance of particle tuned mass dampers under seismic excitation", Earthq. Eng. Struct. Dyn., 46(5), 697-714. https://doi.org/10.1002/eqe.2826.
  19. Lu, Z., Li, K., Ouyang, Y.T. and Shan, J.Z. (2018a), "Performance-based optimal design of tuned impact damper for seismically excited nonlinear building", Eng. Struct., 160, 314-327. https://doi.org/10.1016/j.engstruct.2018.01.042.
  20. Lu, Z., Lu, X.L. and Masri, S.F. (2010), "Studies of the performance of particle dampers under dynamic loads", J. Sound Vib., 329(26), 5415-5433. https://doi.org/10.1016/j.jsv.2010.06.027.
  21. Lu, Z., Wang, D.C., Masri, S.F. and Lu, X.L. (2016), "An experimental study of vibration control of wind-excited high-rise buildings using particle tuned mass dampers", Smart Struct. Syst., 18(1), 93-115. https://doi.org/10.12989/sss.2016.18.1.093.
  22. Lu, Z., Wang, Z.X., Masri, S.F. and Lu, X.L. (2018b), "Particle impact dampers: Past, present, and future", Struct. Control Hlth., 25(1). https://doi.org/10.1002/stc.2058.
  23. Malcolm, D. and Hansen, A. (2006), WindPACT Turbine Rotor Design Study: June 2000--June 2002 (Revised), National Renewable Energy Lab.(NREL), Golden, CO (United States).
  24. Mao, K.M., Wang, M.Y., Xu, Z.W. and Chen, T.N. (2004), "Simulation and characterization of particle damping in transient vibrations", J. Vib Acoust., 126(2), 202-211. https://doi.org/10.1115/1.1687401.
  25. Masri, S. and Ibrahim, A. (1972), "Stochastic excitation of a simple system with impact damper", Earthq. Eng. Struct. Dyn., 1(4), 337-346. https://doi.org/10.1002/eqe.4290010404.
  26. Meng, J.Y., Dai, K.S., Zhao, Z., Mao, Z.X., Camara, A., Zhang, S.H. and Mei, Z. (2020), "Study on the aerodynamic damping for the seismic analysis of wind turbines in operation", Renew. Energ. 159, 1224-1242. https://doi.org/10.1016/j.renene.2020.05.181.
  27. Murtagh, P.J., Ghosh, A., Basu, B. and Broderick, B.M. (2008), "Passive-control of wind turbine vibrations including blade/tower interaction and rotationally sampled turbulence", Wind Energy. 11(4), 305-317. https://doi.org/10.1002/we.249.
  28. Papalou, A. and Masri, S.F. (1996a), "Performance of particle dampers under random excitation", J. Vib. Acoust., 118(4), 614-621. https://doi.org/10.1115/1.2888343.
  29. Papalou, A. and Masri, S.F. (1996b), "Response of impact dampers with granular materials under random excitation", Earthq. Eng. Struct. Dyn., 25(3), 253-267. https://doi.org/10.1002/(SICI)10969845(199603)25:3<253::AID-EQE553>3.0.CO;2-4.
  30. Papalou, A. and Masri, S.F. (1998), "An experimental investigation of particle dampers under harmonic excitation", J. Vib. Control, 4(4), 361-379. https://doi.org/10.1177/107754639800400402.
  31. Rezaee, M. and Aly, A.M. (2016), "Vibration control in wind turbines for performance enhancement: A comparative study", Wind Struct., 22(1), 107-131. https://doi.org/10.12989/was.2016.22.1.107.
  32. Sack, A., Heckel, M., Kollmer, J.E., Zimber, F. and Poschel, T. (2013), "Energy dissipation in driven granular matter in the absence of gravity", Phys. Rev. Lett., 111(1), 018001. https://doi.org/10.1103/PhysRevLett.111.018001.
  33. Sanchez, M. and Carlevaro, C.M. (2013), "Nonlinear dynamic analysis of an optimal particle damper", J. Sound Vib., 332(8), 2070-2080. https://doi.org/10.1016/j.jsv.2012.09.042.
  34. Sanchez, M., Rosenthal, G. and Pugnaloni, L.A. (2012), "Universal response of optimal granular damping devices", J. Sound Vib., 331(20), 4389-4394. https://doi.org/10.1016/j.jsv.2012.05.001.
  35. Shi, W.X., Wang, L.K., Lu, Z. and Wang, H.T. (2019), "Experimental and numerical study on adaptive-passive variable mass tuned mass damper", J. Sound Vib., 452 97-111. https://doi.org/10.1016/j.jsv.2019.04.008.
  36. Si, Y.L., Karimi, H.R. and Gao, H.J. (2013), "Modeling and parameter analysis of the OC3-Hywind floating wind turbine with a tuned mass damper in nacelle", J. Appl. Math., https://doi.org/10.1155/2013/679071.
  37. Symans, M.D., Charney, F.A., Whittaker, A.S., Constantinou, M.C., Kircher, C.A., Johnson, M.W. and McNamara, R.J. (2008), "Energy dissipation systems for seismic applications: Current practice and recent developments", J. Struct. Eng., 134(1), 3-21. https://doi.org/10.1061/(Asce)0733-9445(2008)134:1(3).
  38. Valamanesh, V. and Myers, A.T. (2014), "Aerodynamic damping and seismic response of horizontal axis wind turbine towers", J. Struct. Eng., 140(11), 04014090. https://doi.org/10.1061/(Asce)St.1943-541x.0001018.
  39. Wong, C.X., Daniel, M.C. and Rongong, J.A. (2009), "Energy dissipation prediction of particle dampers", J. Sound Vib., 319(1-2), 91-118. https://doi.org/10.1016/j.jsv.2008.06.027.
  40. Yan, W.M., Xu, W.B., Wang, J. and Chen, Y.J. (2014), "Experimental research on the fffects of a tuned particle damper on a viaduct system under seismic loads", J. Bridge Eng., 19(3). https://doi.org/10.1061/(Asce)Be.1943-5592.0000525.
  41. Yang, J., He, E.M. and Hu, Y.Q. (2019), "Dynamic modeling and vibration suppression for an offshore wind turbine with a tuned mass damper in floating platform", Appl. Ocean Res., 83 21-29. https://doi.org/10.1016/j.apor.2018.08.021.
  42. Zhao, B., Gao, H., Wang, Z.X. and Lu, Z. (2018), "Shaking table test on vibration control effects of a monopile offshore wind turbine with a tuned mass damper", Wind Energy. 21(12), 1309-1328. https://doi.org/10.1002/we.2256.
  43. Zhao, Z., Dai, K.S., Lalond, E.R., Meng, J.Y., Li, B.W., Ding, Z.B. and Bitsuamlak, G. (2019a), "Studies on application of scissor-jack braced viscous damper system in wind turbines under seismic and wind loads", Eng. Struct., 196. https://doi.org/10.1016/j.engstruct.2019.109294.
  44. Zhao, Z., Zhang, R. and Lu, Z. (2019b), "A particle inerter system for structural seismic response mitigation", J. Franklin Inst., 356(14), 7669-7688. https://doi.org/10.1016/j.jfranklin.2019.02.001.
  45. Zuo, H.R., Bi, K.M. and Hao, H. (2017), "Using multiple tuned mass dampers to control offshore wind turbine vibrations under multiple hazards", Eng. Struct., 141, 303-315. https://doi.org/10.1016/j.engstruct.2017.03.006.