DOI QR코드

DOI QR Code

Electrochemical reduction of nitrate using divided electrolytic cell by proton exchange membrane

  • Cha, Ho Young (Department of Civil and Environmental Engineering, Konkuk University) ;
  • Park, Youngho (Department of Civil and Environmental Engineering, Konkuk University) ;
  • Seong, Kee-Won (Department of Civil and Environmental Engineering, Konkuk University) ;
  • Park, Ki Young (Department of Civil and Environmental Engineering, Konkuk University)
  • 투고 : 2020.05.06
  • 심사 : 2021.05.27
  • 발행 : 2021.07.25

초록

The electrochemical reduction of nitrate using a divided electrolytic cell in combination with Zn cathode and (Pt)/Ti anode reduced the high concentrations of nitrate (1,000 mg NO3-N/L). A proton exchange membrane (Nafion-117) was used to increase the nitrate reduction efficiency by preventing the re-oxidation of nitrite produced during the reduction process. The current density and anolyte concentration, considered as parameters, were tested to assess the electrochemical reduction of nitrate. The reduction of nitrate shortened the electrolysis time in proportion to the current density, and the time for 90% removal was 5 h at 5 mA/cm2, 3 h at 10 mA/cm2, and 1.8 h at 20 mA/cm2. The yields of ammonia were approximately 50%-55% of the initial nitrate-nitrogen concentration regardless of the current density and was insignificantly related to the anolyte concentration.

키워드

과제정보

This study was supported by the Konkuk University Researcher Fund in 2019. This research was financially supported by the Korea Ministry of Environment as Waste to Energy-Recycling Human Resource Development Project and the Human Resource Program (Grant No. 20194010201790) of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea.

참고문헌

  1. Akarsu, C., Ayol, A. and Taner, F. (2017), "Treatment of domestic wastewater by using electrochemical process using different metal electrodes", JSM Environ. Sci. Ecol., 5(2), 1043.
  2. Barrabesa, N. and Sa, J. (2011), "Catalytic nitrate removal from water, past, present and future perspectives", Appl. Catal. B Environ., 104(1-2), 1-5. https://doi.org/10.1016/j.apcatb.2011.03.011.
  3. Bockris, J.M. and Kim, J. (1997), "Electrochemical treatment of low-level nuclear wastes", J. Appl. Electrochem., 27(6), 623-634. https://doi.org/10.1023/A:1018419316870.
  4. Bosko, M.L., Rodrigues, M.A.S., Ferreira, J.Z., Miro, E.E. and Bernardes, A.M. (2016), "Nitrate reduction of brines from water desalination plants by membrane electrolysis", J. Membr. Sci., 451, 276-284. https://doi.org/10.1016/j.memsci.2013.10.004.
  5. Bouzek. K., Paidar, M., Sadilkova, A. and Bergmann, H. (2001), "Electrochemical reduction of nitrate in weakly alkaline solutions", J. Appl. Electrochem., 31(11), 1185-1193. https://doi.org/10.1023/A:1012755222981.
  6. Carmo, M., Fritz, D., Mergel, J. and Stolten, D.A. (2013), "A comprehensive review on PEM electrolysis", Int. J. Hydrogen Energ., 38(12), 4901-4934. https://doi.org/10.1016/j.ijhydene.2013. 01.151.
  7. Chiu, Y., Lee, L., Chang, C. and Chao, A.C. (2007), "Control of carbon and ammonium ratio for simultaneous nitrification and denitrification in a sequencing batch bioreactor", Int. Biodeter. Biodegr., 59(1), 1-7. https://doi.org/10.1016/j.ibiod.2006.08.001.
  8. Constantinou, C.L., Costa, C.N. and Efstathiou, A.M. (2010), "Catalytic removal of nitrates from waters", Catal. Today, 151(1-2), 190-194. https://doi.org/10.1016/j.cattod.2010.02.019.
  9. Dima, G.E., Vooys, A.C.A. and Koper, M.T.M. (2003), "Electrocatalytic reduction of nitrate at low concentration on coinage and transition-metal electrodes in acid solutions", J. Electroanal. Chem., 554, 15-23. https://doi.org/10.1016/S0022-0728(02)01443-2.
  10. El Midaoui, A., Elhannouni, F, Taky, M., Chay, L., Menkouchi Sahli, M.A., Echihabi, L. and Hafsi, M. (2002), "Optimization of nitrate removal operation from ground water by electrodialysis", Sep. Purif. Technol., 29(3), 235-244. https://doi.org/10.1016/S1383-5866(02)00092-8.
  11. Fanning, J.C. (2000), "The chemical reduction of nitrate in aqueous solution", Coordin. Chem. Rev., 199(1), 159-179. https://doi.org/10.1016/S0010-8545(99)00143-5.
  12. Garcia-Segura, S., Lanzarini-Lopes, M. Hristovski, K. and Westerhoff, P. (2018), "Electrocatalytic reduction of nitrate: Fundamentals to full-scale water treatment applications", Appl. Catal. B Environ., 236, 546-568. https://doi.org/10.1016/j.apcatb.2018.05.041.
  13. Guo, M., Feng, L., Liu, Y. and Zhang, L. (2020), "Electrochemical simultaneous denitrification and removal of phosphorus from the effluent of a municipal wastewater treatment plant using cheap metal electrodes", Environ. Sci. Water Res. Technol., 6(4), 1095-1105. https://doi.org/10.1039/D0EW00049C.
  14. Hiscock, K.M., Lloyd, J.W. and Lerner, D.N. (1991), "Review of natural and artificial denitrification of groundwater", Water Res., 25(9), 1099-1111. https://doi.org/10.1016/0043-1354(91)90203-3.
  15. Horanyi, G. and Rizmayer, E.M. (1985), "Electrocatalytic reduction of NO2- and NO3- ions at a platinized platinum electrode in alkaline medium", J. Electroanal. Chem. Interf. Electrochem., 188(1-2), 265-272. https://doi.org/10.1016/S0022-0728(85)80067-X.
  16. Kim, M., Chung, J., Yoo, C., Lee, M.S., Cho, I., Lee, D. and Lee, K. (2013), "Catalytic reduction of nitrate in water over Pd-Cu/TiO2 catalyst: Effect of the strong metal-support interaction (SMSI) on the catalytic activity", Appl. Catal. B Environ., 142, 354-361. https://doi.org/10.1016/j.apcatb.2013.05.033.
  17. Lee, J., Cha, H.Y., Min, K.J. Cho, J. and Park, K.Y. (2018), "Electrochemical nitrate reduction using a cell divided by ion-exchange membrane", Membr. Water Treat., 9(3), 189-194. https://doi.org/10.12989/mwt.2018.9.3.189.
  18. Li, M., Feng, C., Zhang, Z., and Sugiura, N. (2009), "Efficient electrochemical reduction of nitrate to nitrogen using Ti/IrO2-Pt anode and different cathodes", Electrochim. Acta, 54(20), 4600-4606. https://doi.org/10.1016/j.electacta.2009.03.064.
  19. March, J.G. and Gual, M. (2007), "Breakpoint chlorination curves of greywater", Water Environ. Res., 79(8), 828-832. https://doi.org/10.2175/106143007x156736.
  20. Martinez, J., Ortiz, A. and Ortiz, I. (2017), "State-of-the-art and perspectives of the catalytic and electrocatalytic reduction of aqueous nitrates", Appl. Catal. B Environ., 207, 42-59. https://doi.org/10.1016/j.apcatb.2017.02.016.
  21. Min, K.J., Choi, S.Y., Jang, D., Lee, J. and Park, K.Y. (2019), "Separation of metals from electroplating wastewater using electrodialysis", Energ. Source Part A, 41(20), 2471-2480. https://doi.org/10.1080/15567036.2019.1568629.
  22. Min, K.J., Kim, J.H. and Park, K.Y. (2021), "Characteristics of heavy metal separation and determination of limiting current density in a pilot-scale electrodialysis process for plating wastewater treatment", Sci. Total Environ., 757, 143762. https://doi.org/10.1016/j.scitotenv.2020.143762.
  23. Min, K.J., Oh, E.J., Kim, G., Kim, J.H., Ryu, J.H. and Park, K.Y. (2020), "Influence of linear flow velocity and ion concentration on limiting current density during electrodialysis", Desalin. Water Treat., 175, 334-340. https://doi.org/10.5004/dwt.2020.24663.
  24. Modisha, P. and Bessarabov, D. (2016), "Electrocatalytic process for ammonia electrolysis: A remediation technique with hydrogen co-generation", Int. J. Electrochem. Sci., 11, 6627-6635. https://doi.org/10.20964/2016.08.54.
  25. Oh, E., Kim, J., Ryu, J.H., Min, K.J., Shin, H.G. and Park, K.Y. (2020), "Influence of counter anions on metal separation and water transport in electrodialysis treating plating wastewater", Membr. Water Treat., 11(3), 201-206. https://doi.org/10.12989/mwt.2020.11.3.201.
  26. Paidar, K.M., Bouzek, K. and Bergmann, H. (2002), "Influence of cell construction on the electrochemical reduction of nitrate", Chem. Eng. J., 85(2-3), 99-109. https://doi.org/10.1016/S1385-8947(01)00158-9.
  27. Park, K.Y., Cha, H.Y., Chantrasakdakul, P., Lee, K., Kweon, J.H., and Bae, S. (2017), "Removal of nitrate by electrodialysis: effect of operation parameters", Membr. Water Treat., 8(2), 201-210. https://doi.org/10.12989/mwt.2018.8.2.201.
  28. Pintar, A. and Batista, J. (2007), "Catalytic stepwise nitrate hydrogenation in batch-recycle fixed-bed reactors", J. Hazard. Mater., 149(2), 387-398. https://doi.org/10.1016/j.jhazmat.2007.04.004.
  29. Polatides, C., Dortsiou, M. and Kyriacou, G. (2005), "Electrochemical removal of nitrate ion from aqueous solution by pulsing potential electrolysis", Electrochim. Acta, 50(25), 5237-5241. https://doi.org/10.1016/j.electacta.2005.01.057.
  30. Raka, Y.D., Bock, R., Karoliussen, H., Wilhelmsen, O. and Stokke Burheim, O. (2021), "The influence of concentration and temperature on the membrane resistance of ion exchange membranes and the levelised cost of hydrogen from reverse electrodialysis with ammonium bicarbonate", Membranes, 11(2), 135. https://doi.org/10.3390/membranes11020135.
  31. Reyter, D., Belanger, D. and Roue, L. (2011), "Optimization of the cathode material for nitrate removal by a paired electrolysis process", J. Hazard. Mater., 192(2), 507-13. https://doi.org/10.1016/j.jhazmat.2011.05.054.
  32. Samatya, S., Kabay, N., Yuksel, U., Arda, M. and Yuksel, M. (2006), "Removal of nitrate from aqueous solution by nitrate selective ion exchange resins", React. Funct, Polym., 66(11), 1206-1214. https://doi.org/10.1016/j.reactfunctpolym.2006.03.009.
  33. Scharifker, B.R., Mostany, J. and Serruya, A. (2000), "Catalytic reduction of nitrate during electrodeposition of thallium from Tl3+ solution", Electrochem. Commun., 2(6), 448-451. https://doi.org/10.1016/S1388-2481(00)00052-7.
  34. Schoeman, J.J., and Steyn, A. (2003), "Nitrate removal with reverse osmosis in a rural area in South Africa", Desalination, 155(1), 15-26. https://doi.org/10.1016/S0011-9164(03)00235-2.
  35. Szpyrkowicz, L., Daniele, S., Radaelli, M. and Specchia, S. (2006), "Removal of NO3- from water by electrochemical reduction in different reactor configurations", Appl. Catal. B Environ., 66(1), 40-50. https://doi.org/10.1016/j.apcatb.2006.02.020.
  36. Vazac, K., Paidar, M., Roubalik, M. and Bouzek, K. (2014), "Impact of the cation exchange membrane thickness on the alkaline water electrolysis", Chem. Eng. Trans., 41, 187-192. https://doi.org/10.3303/CET1441032.
  37. Werth, C.J., Yan, C. and Troutman, J.P. (2021), "Factors impeding replacement of ion exchange with (electro)catalytic treatment for nitrate removal from drinking water", ACS ES&T Eng., 1(1), 6-20. https://doi.org/10.1021/acsestengg.0c00076.
  38. Xu, D., Li, Y., Yin, L., Ji, Y. Niu, J. and Yu, Y. (2018), "Electrochemical removal of nitrate in industrial wastewater", Front. Environ. Sci. Eng., 12(1), 9. https://doi.org/10.1007/s11783-018-1033-z.