DOI QR코드

DOI QR Code

Size-dependent vibration response of porous graded nanostructure with FEM and nonlocal continuum model

  • Received : 2020.04.30
  • Accepted : 2021.03.04
  • Published : 2021.07.25

Abstract

In the present paper, a refined trigonometric higher-order shear deformation theory has been presented with the conjunction of nonlocal theory for the vibrational response of functionally graded (FG) porous nanoplate. The displacement field is chosen based on assumptions that the out of the plane displacement consists of bending and shear components whereas the transverse shear-strain has nonlinear variation along the thickness direction. The number of unknown variables is four, as against five in other renowned shear deformation theories. The governing equations have been derived using Hamilton's principle. A generalized porosity model has also been developed to accommodate both even and uneven type of distribution of porosity in the FG nanoplates. The closed-form solution of simply-supported FG porous nanoplates is obtained and the results are compared with the available reported results. In finite element solution, a C0 continuous isoparametric quadrilateral element has been used with various conventional and unconventional boundary conditions. The effects of various parameters like small-scale effect, aspect ratio, volume fraction index, porosity volume fraction, and thickness ratio have been investigated. The significant influence of small-scale effects and porosity inclusions have been observed in the reported results. It has been reported that both closed-form and finite element solutions with the present theory can make accurate predictions of the free vibration response.

Keywords

References

  1. Arefi, M. and Rabczuk, T. (2019), "A nonlocal higher order shear deformation theory for electro-elastic analysis of a piezoelectric doubly curved nano shell", Compos. Part B Eng., 168, 496-510. https://doi.org/10.1016/j.compositesb.2019.03.065.
  2. Barretta, R. and de Sciarra, F.M. (2018), "Constitutive boundary conditions for nonlocal strain gradient elastic nano-beams", Int. J. Eng. Sci., 130, 187-198. https://doi.org/10.1016/j.ijengsci.2018.05.009.
  3. Barretta, R. and de Sciarra, F.M. (2019), "Variational nonlocal gradient elasticity for nano-beams", Int. J. Eng. Sci., 143, 73-91. https://doi.org/10.1016/j.ijengsci.2019.06.016.
  4. Barretta, R., Faghidian, S.A. and De Sciarra, F.M. (2019a), "Stress-driven nonlocal integral elasticity for axisymmetric nano-plates", Int. J. Eng. Sci., 136, 38-52. https://doi.org/10.1016/j.ijengsci.2019.01.003.
  5. Barretta, R., Caporale, A., Faghidian, S.A., Luciano, R., de Sciarra, F.M. and Medaglia, C.M. (2019b), "A stress-driven local-nonlocal mixture model for Timoshenko nano-beams", Compos. Part B Eng., 164, 590-598. https://doi.org/10.1016/j.compositesb.2019.01.012.
  6. Barretta, R., Fabbrocino, F., Luciano, R., De Sciarra, F.M. and Ruta, G. (2020), "Buckling loads of nano-beams in stress-driven nonlocal elasticity", Mech. Adv. Mater. Struct., 27(11), 869-875. https://doi.org/10.1080/15376494.2018.1501523.
  7. Batou, B., Nebab, M., Bennai, R., Atmane, H.A., Tounsi, A. and Bouremana, M. (2019), "Wave dispersion properties in imperfect sigmoid plates using various HSDTs", Steel Compos. Struct., 33(5), 699-716. http://doi.org/10.12989/scs.2019.33.5.699.
  8. Belkorissat, I., Houari, M.S.A., Tounsi, A., Bedia, E.A. and Mahmoud, S.R. (2015), "On vibration properties of functionally graded nano-plate using a new nonlocal refined four variable model", Steel Compos. Struct., 18(4), 1063-1081. https://doi.org/10.12989/scs.2015.18.4.1063.
  9. Ebrahimi, F. and Jafari, A. (2017), "Investigating vibration behavior of smart imperfect functionally graded beam subjected to magnetic-electric fields based on refined shear deformation theory", Adv. Nano Res., 5(4), 281. https://doi.org/10.12989/anr.2017.5.4.281.
  10. Ebrahimi, F., Karimiasl, M. and Mahesh, V. (2019a), "Vibration analysis of magneto-flexo-electrically actuated porous rotary nanobeams considering thermal effects via nonlocal strain gradient elasticity theory", Adv. Nano Res., 7(4), 223-231. http://doi.org/10.12989/anr.2019.7.4.223.
  11. Ebrahimi, F., Hosseini, S.H.S. and Bayrami, S.S. (2019b), "Nonlinear forced vibration of pre-stressed graphene sheets subjected to a mechanical shock: An analytical study". Thin Wall. Struct., 141, 293-307. https://doi.org/10.1016/j.tws.2019.04.038.
  12. Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803.
  13. Eringen, A.C. and Edelen, D.G.B. (1972), "On nonlocal elasticity", Int. J. Eng. Sci., 10(3), 233-248. https://doi.org/10.1016/0020-7225(72)90039-0.
  14. Fenjan, R.M., Ahmed, R.A., Faleh, N.M. and Fatima, F.M. (2020a), "Numerical investigation on scale-dependent vibrations of porous foam plates under dynamic loads", Struct. Monitor. Maintenance, 7(2), 85-107.http://dx.doi.org/10.12989/smm.2020.7.2.085.
  15. Fenjan, R.M., Ahmed, R.A., Faleh, N.M. and Hani, F.M. (2020b), "Dynamic response of size-dependent porous functionally graded beams under thermal and moving load using a numerical approach", Struct. Monitor. Maintenance, 7(2), 69-84. http://doi.org/10.12989/smm.2020.7.2.069.
  16. Ghabussi, A., Habibi, M., NoormohammadiArani, O., Shavalipour, A., Moayedi, H. and Safarpour, H. (2021), "Frequency characteristics of a viscoelastic graphene nanoplatelet-reinforced composite circular microplate", J. Vib. Control, 27(1-2), 101-118. https://doi.org/10.1177%2F1077546320923930. https://doi.org/10.1177%2F1077546320923930
  17. Gholami, R. and Ansari, R. (2018), "Imperfection sensitivity of post-buckling behavior and vibration response in pre-and postbuckled regions of nanoscale plates considering surface effects", Int. J. Appl. Mech., 10(3), 1850027. https://doi.org/10.1142/S1758825118500278.
  18. Gupta, A. and Talha, M. (2017), "Nonlinear flexural and vibration response of geometrically imperfect gradient plates using hyperbolic higher-order shear and normal deformation theory", Compos. Part B Eng., 123, 241-261. https://doi.org/10.1016/j.compositesb.2017.05.010.
  19. Gupta, A. and Talha, M. (2018a), "Influence of micro-structural defects on post-buckling and large-amplitude vibration of geometrically imperfect gradient plate", Nonlinear Dynam., 94(1), 39-56. https://doi.org/10.1007/s11071-018-4344-5.
  20. Gupta, A. and Talha, M. (2018b), "Influence of porosity on the flexural and free vibration responses of functionally graded plates in thermal environment", Int. J. Struct. Stabil. Dynam., 18(1), 1850013. https://doi.org/10.1142/S021945541850013X.
  21. Jha, D.K., Kant, T. and Singh, R.K. (2013), "Free vibration response of functionally graded thick plates with shear and normal deformations effects", Compos. Struct., 96, 799-823. http://doi.org/10.1016/j.compstruct.2012.09.034.
  22. Karami, B. and Janghorban, M. (2019), "On the dynamics of porous nanotubes with variable material properties and variable thickness", Int. J. Eng. Sci., 136, 53-66. https://doi.org/10.1016/j.ijengsci.2019.01.002.
  23. Karami, B., Shahsavari, D. and Janghorban, M. (2019), "On the dynamics of porous doubly-curved nanoshells", Int. J. Eng. Sci., 143, 39-55. https://doi.org/10.1016/j.ijengsci.2019.06.014.
  24. Koizumi, M.F.G.M. (1997), "FGM activities in Japan", Compos. Part B Eng., 28(1-2), 1-4. https://doi.org/10.1016/S1359-8368(96)00016-9.
  25. Liang, Y.C., Dou, J.H. and Bai, Q.S. (2007), "Molecular dynamic simulation study of AFM single-wall carbon nanotube tip-surface interactions", Key Eng. Mater., 339, 206-210. https://doi.org/10.4028/www.scientific.net/KEM.339.206.
  26. Mantari, J.L. and Monge, J.C. (2016), "Buckling, free vibration and bending analysis of functionally graded sandwich plates based on an optimized hyperbolic unified formulation", Int. J. Mech. Sci., 119, 170-186. https://doi.org/10.1016/j.ijmecsci.2016.10.015.
  27. Mehar, K., Mahapatra, T.R., Panda, S.K., Katariya, P.V. and Tompe, U.K. (2018), "Finite-element solution to nonlocal elasticity and scale effect on frequency behavior of shear deformable nanoplate structure", J. Eng. Mech., 144(9), 04018094. https://orcid.org/0000-0001-8841-7449. https://doi.org/10.1061/(asce)em.1943-7889.0001519
  28. Patil, S.A., Shinde, D.V., Patil, D.V., Tehare, K.K., Jadhav, V.V., Lee, J.K., Mane, R.S., Shrestha, N.K. and Han, S.H. (2014), "A simple, room temperature, solid-state synthesis route for metal oxide nanostructures", J. Mater. Chem. A, 2(33), 13519-13526. https://doi.org/10.1039/C4TA02267J.
  29. Ramirez, D., Cuba, L., Mantari, J.L. and Arciniega, R.A. (2019), "Bending and free vibration analysis of functionally graded plates via optimized non-polynomial higher order theories", J. Appl. Computat. Mech., 5(2), 281-298. https://doi.org/10.22055/JACM.2018.25177.1237.
  30. Romano, G., Barretta, R., Diaco, M. and de Sciarra, F.M. (2017), "Constitutive boundary conditions and paradoxes in nonlocal elastic nanobeams", Int. J. Mech. Sci., 121, 151-156. https://doi.org/10.1016/j.ijmecsci.2016.10.036.
  31. Sarangan, S. and Singh, B.N. (2016), "Higher-order closed-form solution for the analysis of laminated composite and sandwich plates based on new shear deformation theories", Compos. Struct., 138, 391-403. https://doi.org/10.1016/j.compstruct.2015.11.049.
  32. Sedighi, H.M., Daneshmand, F. and Abadyan, M. (2015), "Dynamic instability analysis of electrostatic functionally graded doubly-clamped nano-actuators", Compos. Struct., 124, 55-64. http://doi.org/10.1016/j.compstruct.2015.01.004.
  33. Sedighi, H.M., Daneshmand, F. and Abadyan, M. (2016), "Modeling the effects of material properties on the pull-in instability of nonlocal functionally graded nano-actuators", ZAMM J. Appl. Math. Mech. 96(3), 385-400. https://doi.org/10.1002/zamm.201400160.
  34. Shariati, A., Mohammad-Sedighi, H., Zur, K.K., Habibi, M. and Safa, M. (2020), "On the vibrations and stability of moving viscoelastic axially functionally graded nanobeams", Materials, 13(7), 1707. https://doi.org/10.3390/ma13071707.
  35. Sobhy, M. and Radwan, A.F. (2017), "A new quasi 3D nonlocal plate theory for vibration and buckling of FGM nanoplates", Int. J. Appl. Mech., 9(1), 1750008. https://doi.org/10.1142/S1758825117500089.
  36. Sun, C.T. and Zhang, H. (2003), "Size-dependent elastic moduli of platelike nanomaterials", J. Appl. Phys., 93(2), 1212-1218. https://doi.org/10.1063/1.1530365.
  37. Thai, H.T. and Choi, D.H. (2013), "Efficient higher-order shear deformation theories for bending and free vibration analyses of functionally graded plates", Arch. Appl. Mech., 83(12), 1755- 1771. http://doi.org/10.1007/s00419-013-0776-z.
  38. Yang, X., Liu, H. and Ma, J. (2020), "Thermo-mechanical vibration of FG curved nanobeam containing porosities and reinforced by graphene platelets", Microsyst. Technol., 26(8), 2535-2551. https://doi.org/10.1007/s00542-020-04794-w.
  39. Zhu, R., Pan, E. and Roy, A.K. (2007), "Molecular dynamics study of the stress-strain behavior of carbon-nanotube reinforced Epon 862 composites", Mater. Sci. Eng. A, 447(1-2), 51-57. https://doi.org/10.1016/j.msea.2006.10.054.