Browse > Article
http://dx.doi.org/10.12989/anr.2021.11.1.001

Size-dependent vibration response of porous graded nanostructure with FEM and nonlocal continuum model  

Kumar, Yogesh (School of Engineering, Shiv Nadar University)
Gupta, Ankit (School of Engineering, Shiv Nadar University)
Tounsi, Abdelouahed (YFL (Yonsei Frontier Lab), Yonsei University)
Publication Information
Advances in nano research / v.11, no.1, 2021 , pp. 1-17 More about this Journal
Abstract
In the present paper, a refined trigonometric higher-order shear deformation theory has been presented with the conjunction of nonlocal theory for the vibrational response of functionally graded (FG) porous nanoplate. The displacement field is chosen based on assumptions that the out of the plane displacement consists of bending and shear components whereas the transverse shear-strain has nonlinear variation along the thickness direction. The number of unknown variables is four, as against five in other renowned shear deformation theories. The governing equations have been derived using Hamilton's principle. A generalized porosity model has also been developed to accommodate both even and uneven type of distribution of porosity in the FG nanoplates. The closed-form solution of simply-supported FG porous nanoplates is obtained and the results are compared with the available reported results. In finite element solution, a C0 continuous isoparametric quadrilateral element has been used with various conventional and unconventional boundary conditions. The effects of various parameters like small-scale effect, aspect ratio, volume fraction index, porosity volume fraction, and thickness ratio have been investigated. The significant influence of small-scale effects and porosity inclusions have been observed in the reported results. It has been reported that both closed-form and finite element solutions with the present theory can make accurate predictions of the free vibration response.
Keywords
closed-form solution; composite materials; functionally graded (FG) material; Hamilton's principle; Navier's solution; nonlocal theory; vibration analysis;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Belkorissat, I., Houari, M.S.A., Tounsi, A., Bedia, E.A. and Mahmoud, S.R. (2015), "On vibration properties of functionally graded nano-plate using a new nonlocal refined four variable model", Steel Compos. Struct., 18(4), 1063-1081. https://doi.org/10.12989/scs.2015.18.4.1063.   DOI
2 Koizumi, M.F.G.M. (1997), "FGM activities in Japan", Compos. Part B Eng., 28(1-2), 1-4. https://doi.org/10.1016/S1359-8368(96)00016-9.   DOI
3 Liang, Y.C., Dou, J.H. and Bai, Q.S. (2007), "Molecular dynamic simulation study of AFM single-wall carbon nanotube tip-surface interactions", Key Eng. Mater., 339, 206-210. https://doi.org/10.4028/www.scientific.net/KEM.339.206.   DOI
4 Mantari, J.L. and Monge, J.C. (2016), "Buckling, free vibration and bending analysis of functionally graded sandwich plates based on an optimized hyperbolic unified formulation", Int. J. Mech. Sci., 119, 170-186. https://doi.org/10.1016/j.ijmecsci.2016.10.015.   DOI
5 Sedighi, H.M., Daneshmand, F. and Abadyan, M. (2015), "Dynamic instability analysis of electrostatic functionally graded doubly-clamped nano-actuators", Compos. Struct., 124, 55-64. http://doi.org/10.1016/j.compstruct.2015.01.004.   DOI
6 Sedighi, H.M., Daneshmand, F. and Abadyan, M. (2016), "Modeling the effects of material properties on the pull-in instability of nonlocal functionally graded nano-actuators", ZAMM J. Appl. Math. Mech. 96(3), 385-400. https://doi.org/10.1002/zamm.201400160.   DOI
7 Sobhy, M. and Radwan, A.F. (2017), "A new quasi 3D nonlocal plate theory for vibration and buckling of FGM nanoplates", Int. J. Appl. Mech., 9(1), 1750008. https://doi.org/10.1142/S1758825117500089.   DOI
8 Sun, C.T. and Zhang, H. (2003), "Size-dependent elastic moduli of platelike nanomaterials", J. Appl. Phys., 93(2), 1212-1218. https://doi.org/10.1063/1.1530365.   DOI
9 Mehar, K., Mahapatra, T.R., Panda, S.K., Katariya, P.V. and Tompe, U.K. (2018), "Finite-element solution to nonlocal elasticity and scale effect on frequency behavior of shear deformable nanoplate structure", J. Eng. Mech., 144(9), 04018094. https://orcid.org/0000-0001-8841-7449.   DOI
10 Karami, B., Shahsavari, D. and Janghorban, M. (2019), "On the dynamics of porous doubly-curved nanoshells", Int. J. Eng. Sci., 143, 39-55. https://doi.org/10.1016/j.ijengsci.2019.06.014.   DOI
11 Yang, X., Liu, H. and Ma, J. (2020), "Thermo-mechanical vibration of FG curved nanobeam containing porosities and reinforced by graphene platelets", Microsyst. Technol., 26(8), 2535-2551. https://doi.org/10.1007/s00542-020-04794-w.   DOI
12 Arefi, M. and Rabczuk, T. (2019), "A nonlocal higher order shear deformation theory for electro-elastic analysis of a piezoelectric doubly curved nano shell", Compos. Part B Eng., 168, 496-510. https://doi.org/10.1016/j.compositesb.2019.03.065.   DOI
13 Barretta, R. and de Sciarra, F.M. (2018), "Constitutive boundary conditions for nonlocal strain gradient elastic nano-beams", Int. J. Eng. Sci., 130, 187-198. https://doi.org/10.1016/j.ijengsci.2018.05.009.   DOI
14 Thai, H.T. and Choi, D.H. (2013), "Efficient higher-order shear deformation theories for bending and free vibration analyses of functionally graded plates", Arch. Appl. Mech., 83(12), 1755- 1771. http://doi.org/10.1007/s00419-013-0776-z.   DOI
15 Zhu, R., Pan, E. and Roy, A.K. (2007), "Molecular dynamics study of the stress-strain behavior of carbon-nanotube reinforced Epon 862 composites", Mater. Sci. Eng. A, 447(1-2), 51-57. https://doi.org/10.1016/j.msea.2006.10.054.   DOI
16 Batou, B., Nebab, M., Bennai, R., Atmane, H.A., Tounsi, A. and Bouremana, M. (2019), "Wave dispersion properties in imperfect sigmoid plates using various HSDTs", Steel Compos. Struct., 33(5), 699-716. http://doi.org/10.12989/scs.2019.33.5.699.   DOI
17 Patil, S.A., Shinde, D.V., Patil, D.V., Tehare, K.K., Jadhav, V.V., Lee, J.K., Mane, R.S., Shrestha, N.K. and Han, S.H. (2014), "A simple, room temperature, solid-state synthesis route for metal oxide nanostructures", J. Mater. Chem. A, 2(33), 13519-13526. https://doi.org/10.1039/C4TA02267J.   DOI
18 Ramirez, D., Cuba, L., Mantari, J.L. and Arciniega, R.A. (2019), "Bending and free vibration analysis of functionally graded plates via optimized non-polynomial higher order theories", J. Appl. Computat. Mech., 5(2), 281-298. https://doi.org/10.22055/JACM.2018.25177.1237.   DOI
19 Romano, G., Barretta, R., Diaco, M. and de Sciarra, F.M. (2017), "Constitutive boundary conditions and paradoxes in nonlocal elastic nanobeams", Int. J. Mech. Sci., 121, 151-156. https://doi.org/10.1016/j.ijmecsci.2016.10.036.   DOI
20 Shariati, A., Mohammad-Sedighi, H., Zur, K.K., Habibi, M. and Safa, M. (2020), "On the vibrations and stability of moving viscoelastic axially functionally graded nanobeams", Materials, 13(7), 1707. https://doi.org/10.3390/ma13071707.   DOI
21 Eringen, A.C. and Edelen, D.G.B. (1972), "On nonlocal elasticity", Int. J. Eng. Sci., 10(3), 233-248. https://doi.org/10.1016/0020-7225(72)90039-0.   DOI
22 Fenjan, R.M., Ahmed, R.A., Faleh, N.M. and Hani, F.M. (2020b), "Dynamic response of size-dependent porous functionally graded beams under thermal and moving load using a numerical approach", Struct. Monitor. Maintenance, 7(2), 69-84. http://doi.org/10.12989/smm.2020.7.2.069.   DOI
23 Jha, D.K., Kant, T. and Singh, R.K. (2013), "Free vibration response of functionally graded thick plates with shear and normal deformations effects", Compos. Struct., 96, 799-823. http://doi.org/10.1016/j.compstruct.2012.09.034.   DOI
24 Ghabussi, A., Habibi, M., NoormohammadiArani, O., Shavalipour, A., Moayedi, H. and Safarpour, H. (2021), "Frequency characteristics of a viscoelastic graphene nanoplatelet-reinforced composite circular microplate", J. Vib. Control, 27(1-2), 101-118. https://doi.org/10.1177%2F1077546320923930.   DOI
25 Gupta, A. and Talha, M. (2018a), "Influence of micro-structural defects on post-buckling and large-amplitude vibration of geometrically imperfect gradient plate", Nonlinear Dynam., 94(1), 39-56. https://doi.org/10.1007/s11071-018-4344-5.   DOI
26 Gupta, A. and Talha, M. (2018b), "Influence of porosity on the flexural and free vibration responses of functionally graded plates in thermal environment", Int. J. Struct. Stabil. Dynam., 18(1), 1850013. https://doi.org/10.1142/S021945541850013X.   DOI
27 Karami, B. and Janghorban, M. (2019), "On the dynamics of porous nanotubes with variable material properties and variable thickness", Int. J. Eng. Sci., 136, 53-66. https://doi.org/10.1016/j.ijengsci.2019.01.002.   DOI
28 Gholami, R. and Ansari, R. (2018), "Imperfection sensitivity of post-buckling behavior and vibration response in pre-and postbuckled regions of nanoscale plates considering surface effects", Int. J. Appl. Mech., 10(3), 1850027. https://doi.org/10.1142/S1758825118500278.   DOI
29 Fenjan, R.M., Ahmed, R.A., Faleh, N.M. and Fatima, F.M. (2020a), "Numerical investigation on scale-dependent vibrations of porous foam plates under dynamic loads", Struct. Monitor. Maintenance, 7(2), 85-107.http://dx.doi.org/10.12989/smm.2020.7.2.085.   DOI
30 Gupta, A. and Talha, M. (2017), "Nonlinear flexural and vibration response of geometrically imperfect gradient plates using hyperbolic higher-order shear and normal deformation theory", Compos. Part B Eng., 123, 241-261. https://doi.org/10.1016/j.compositesb.2017.05.010.   DOI
31 Barretta, R. and de Sciarra, F.M. (2019), "Variational nonlocal gradient elasticity for nano-beams", Int. J. Eng. Sci., 143, 73-91. https://doi.org/10.1016/j.ijengsci.2019.06.016.   DOI
32 Sarangan, S. and Singh, B.N. (2016), "Higher-order closed-form solution for the analysis of laminated composite and sandwich plates based on new shear deformation theories", Compos. Struct., 138, 391-403. https://doi.org/10.1016/j.compstruct.2015.11.049.   DOI
33 Barretta, R., Faghidian, S.A. and De Sciarra, F.M. (2019a), "Stress-driven nonlocal integral elasticity for axisymmetric nano-plates", Int. J. Eng. Sci., 136, 38-52. https://doi.org/10.1016/j.ijengsci.2019.01.003.   DOI
34 Barretta, R., Caporale, A., Faghidian, S.A., Luciano, R., de Sciarra, F.M. and Medaglia, C.M. (2019b), "A stress-driven local-nonlocal mixture model for Timoshenko nano-beams", Compos. Part B Eng., 164, 590-598. https://doi.org/10.1016/j.compositesb.2019.01.012.   DOI
35 Ebrahimi, F. and Jafari, A. (2017), "Investigating vibration behavior of smart imperfect functionally graded beam subjected to magnetic-electric fields based on refined shear deformation theory", Adv. Nano Res., 5(4), 281. https://doi.org/10.12989/anr.2017.5.4.281.   DOI
36 Ebrahimi, F., Karimiasl, M. and Mahesh, V. (2019a), "Vibration analysis of magneto-flexo-electrically actuated porous rotary nanobeams considering thermal effects via nonlocal strain gradient elasticity theory", Adv. Nano Res., 7(4), 223-231. http://doi.org/10.12989/anr.2019.7.4.223.   DOI
37 Ebrahimi, F., Hosseini, S.H.S. and Bayrami, S.S. (2019b), "Nonlinear forced vibration of pre-stressed graphene sheets subjected to a mechanical shock: An analytical study". Thin Wall. Struct., 141, 293-307. https://doi.org/10.1016/j.tws.2019.04.038.   DOI
38 Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803.   DOI
39 Barretta, R., Fabbrocino, F., Luciano, R., De Sciarra, F.M. and Ruta, G. (2020), "Buckling loads of nano-beams in stress-driven nonlocal elasticity", Mech. Adv. Mater. Struct., 27(11), 869-875. https://doi.org/10.1080/15376494.2018.1501523.   DOI