DOI QR코드

DOI QR Code

Recent advances in ZnO nanostructures and their future perspective

  • Rai, Ravi S. (Department of Mechanical Engineering, Indian Institute of Technology (Indian School of Mines) Dhanbad) ;
  • Bajpai, Vivek (Department of Mechanical Engineering, Indian Institute of Technology (Indian School of Mines) Dhanbad)
  • Received : 2021.02.02
  • Accepted : 2021.04.25
  • Published : 2021.07.25

Abstract

This review addresses the recent developments of the processing of ZnO nanostructures (NSs) and characterizations of the developed NSs by various techniques, mainly hydrothermal technique. This article discussed various kinds of ZnO NSs such as wires, rods, flowers, dumbbells, spheres, particles and combs created by hydrothermal process on carbon fibre substrate. ZnO likely has the wealthiest group of NSs among all materials, both in structures and properties. The NSs could have novel applications in sensors, transducers, optoelectronics, and biomedical sciences. This article moreover studies the distinctive NSs of ZnO created by the different procedures and upgrades in the mechanical, electrical and thermal properties of the subsequent progressive composites. ZnO NSs processed on any substrate makes a hierarchical structure and can altogether enhance the specific properties in the final nanocomposites. Article also discussed the potential of ZnO NSs for fiber reinforced nanocomposites, focusing on the most used techniques used for the creation of ZnO NSs reinforced hierarchical composites and surveys the potential for another age of cutting edge multifunctional materials. Recent concepts used for improving or synthesizing other distinctive NSs having tailored properties are also explained in the article.

Keywords

Acknowledgement

Ravi Shankar Rai, Research Scholar, Indian Institute of Technology (Indian School of Mines), Dhanbad, India, Dr. Vivek Bajpai, Assistant Professor, Indian Institute of Technology (Indian School of Mines), Dhanbad, India have not been funded in any way to carry out the review activities.

References

  1. Abdelfatah, M. and El-Shaer, A. (2018), "One step to fabricate vertical submicron ZnO rod arrays by hydrothermal method without seed layer for optoelectronic devices", Mater. Lett., 210, 366-369. https://doi.org/10.1016/j.matlet.2017.09.064.
  2. Absalan, H. and Ghodsi, F.E. (2012), "Comparative study of ZnO thin films prepared by different sol-gel route", Iran. J. Phys. Res., 11(4),
  3. Ahmad, M., Ahmad, M.K., Nafarizal, N., Soon, C.F., Suriani, A.B., Mohamed, A. and Mamat, M.H. (2020), "Chemisorbed CO2 molecules on ZnO nanowires (100 nm) surface leading towards enhanced piezoelectric voltage", Vacuum. 182, 109565. https://doi.org/10.1016/j.vacuum.2020.109565.
  4. Ajala, F., Hamrouni, A., Houas, A., Lachheb, H., Megna, B., Palmisano, L. and Parrino, F. (2018), "The influence of Al doping on the photocatalytic activity of nanostructured ZnO: The role of adsorbed water", Appl. Surf. Sci., 445, 376-382. https://doi.org/10.1016/j.apsusc.2018.03.141.
  5. Al-Ruqeishi, M.S., Mohiuddin, T., Al-Habsi, B., Al-Ruqeishi, F., Al-Fahdi, A. and Al-Khusaibi, A. (2019), "Piezoelectric nanogenerator based on ZnO nanorods". Arab. J. Chem., 12(8), 5173-5179. https://doi.org/10.1016/j.arabjc.2016.12.010.
  6. Amin, G., Asif, M.H., Zainelabdin, A., Zaman, S., Nur, O. and Willander, M. (2011), "Influence of pH, precursor concentration, growth time and temperature on the morphology of ZnO nanostructures grown by the hydrothermal method", J. Nanomater., 2011. https://doi.org/10.1155/2011/269692.
  7. Barreto, G., Morales, G., Canizo, A. and Eyler, N. (2015), "Microwave assisted synthesis of ZnO tridimensional nanostructures", Procedia Mater. Sci., 8, 535-540. https://doi.org/10.1016/j.mspro.2015.04.106.
  8. Baruah, S. and Dutta, J. (2009), "Hydrothermal growth of ZnO nanostructures", Sci. Technol. Adv. Mat., 10(1), https://doi.org/10.1088/1468-6996/10/1/013001.
  9. Baruwati, B., Kumar, D.K. and Manorama, S.V. (2006), "Hydrothermal synthesis of highly crystalline ZnO nanoparticles: A competitive sensor for LPG and EtOH", Sensor Actuat. B Chem., 119(2), 676-682. https://doi.org/10.1016/j.snb.2006.01.028.
  10. Bernardo, M.S., Villanueva, P.G., Jardiel, T., Calatayud, D.G., Peiteado, M. and Caballero, A.C. (2017), "Ga-doped ZnO self-assembled nanostructures obtained by microwave-assisted hydrothermal synthesis: Effect on morphology and optical properties", J. Alloy Compd., 722, 920-927. https://doi.org/10.1016/j.jallcom.2017.06.160.
  11. Bhattacharyya, P., Agarwal, B., Goswami, M., Maiti, D., Baruah, S. and Tribedi, P. (2017), "Zinc oxide nanoparticle inhibits the biofilm formation of Streptococcus pneumoniae", Antonie van Leeuwenhoek, 111(1), 89-99. https://doi.org/10.1007/s10482-017-0930-7.
  12. Boro, B., Gogoi, B., Rajbongshi, B. M. and Ramchiary, A. (2018), "Nano-structured TiO2/ZnO nanocomposite for dye-sensitized solar cells application: A review", Renew. Sust. Energ. Rev., 81, 2264-2270. https://doi.org/10.1016/j.rser.2017.06.035
  13. Brintha, S.R. and Ajitha, M. (2015), "Synthesis and characterization of ZnO nanoparticles via aqueous solution, sol-gel and hydrothermal methods", IOSR J. Appl. Chem., 8(11), 66-72. https://doi.org/10.9790/5736-081116672.
  14. Byun, J.M., Choi, H.R., Kim, Y. Do, Sekino, T. and Kim, S.H. (2017), "Photocatalytic activity under UV/Visible light range of Nb-doped titanate nanostructures synthesized with Nb oxide", Appl. Surf. Sci., 415, 126-131. https://doi.org/10.1016/j.apsusc.2016.08.132.
  15. Byzynski, G., Pereira, A.P., Volanti, D.P., Ribeiro, C. and Longo, E. (2018), "High-performance ultraviolet-visible driven ZnO morphologies photocatalyst obtained by microwave-assisted hydrothermal method", J. Photoch. Photobio. A, 353, 358-367. https://doi.org/10.1016/j.jphotochem.2017.11.032.
  16. Caglar, Y., Gorgun, K. and Aksoy, S. (2015), "Effect of deposition parameters on the structural properties of ZnO nanopowders prepared by microwave-assisted hydrothermal synthesis", Spectrochim. Acta A, 138, 617-622. https://doi.org/10.1016/j.saa.2014.12.008.
  17. Chen, H., Ma, S.Y., Jiao, H.Y., Yang, G.J., Xu, X.L., Wang, T.T., Jiang, X.H. and Zhang, Z.Y. (2016), "The effect microstructure on the gas properties of Ag doped zinc oxide sensors: Spheres and sea-urchin-like nanostructures", J. Alloy Compd., 687, 342-351. https://doi.org/10.1016/j.jallcom.2016.06.153.
  18. Chen, Q., Sun, Y., Wang, Y., Cheng, H. and Wang, Q.M. (2013), "ZnO nanowires-polyimide nanocomposite piezoresistive strain sensor", Sensor Actuat. A Phys., 190, 161-167. https://doi.org/10.1016/j.sna.2012.11.006.
  19. Chen, Y., Wang, Y., Fang, J., Dai, B., Kou, J., Lu, C. and Zhao, Y. (2020), "Design of a ZnO/Poly(vinylidene fluoride) inverse opal film for photon localization-assisted full solar spectrum photocatalysis", Chinese J. Catal., 42(1), 184-192. https://doi.org/10.1016/S1872-2067(20)63588-4.
  20. Cheng, S., Hill, F.A., Heubel, E.V. and Velasquez-Garcia, L.F. (2015), "Low-bremsstrahlung X-ray source using a low-voltage high-current-density nanostructured field emission cathode and a transmission anode for markerless soft tissue imaging", J. Microelectromech. S., 24(2), 373-383. https://doi.org/10.1109/JMEMS.2014.2332176.
  21. Chow, L., Lupan, O., Chai, G., Khallaf, H., Ono, L.K., Roldan Cuenya, B., Tiginyanu, I.M., Ursaki, V.V., Sontea, V. and Schulte, A. (2013), "Synthesis and characterization of Cu-doped ZnO one-dimensional structures for miniaturized sensor applications with faster response", Sensor Actuat., A Phys., 189, 399-408. https://doi.org/10.1016/j.sna.2012.09.006.
  22. Dantas, M.O.S., Criado, D., Zuniga, A., Silva, W.A.A., Galeazzo, E., Peres, H.E.M. and Kopelvski, M.M. (2020), "ZnO nanowire-based field emission devices through a microelectronic compatible route", J. Integr. Circuit Syst., 15(1), 1-6. https://doi.org/10.29292/jics.v15i1.105.
  23. Das, G., Deka, B.K., Lee, S.H., Park, Y. and Yoon, Y.S. (2015), "Poly (vinyl alcohol)/silica nanoparticles based anion-conducting nanocomposite membrane for fuel-cell applications", Macromol. Res., 23(3), 256-264. https://doi.org/10.1007/s13233-015-3033-1.
  24. Das, S., Bandyopadhyay, A., Das, S., Das, D. and Sutradhar, S. (2018), "Defect induced room-temperature ferromagnetism and enhanced dielectric property in nanocrystalline ZnO co-doped with Tb and Co", J. Alloy Compd., 731, 591-599. https://doi.org/10.1016/j.jallcom.2017.10.057.
  25. Das, S., Das, S. and Sutradhar, S. (2017), "Effect of Gd3+and Al3+on optical and dielectric properties of ZnO nanoparticle prepared by two-step hydrothermal method", Ceram. Int., 43(9), 6932-6941. https://doi.org/10.1016/j.ceramint.2017.02.116.
  26. Deka, B.K., Mandal, M. and Maji, T.K. (2012), "Effect of nanoparticles on flammability, UV resistance, biodegradability and chemical resistance of wood polymer nanocomposite", Ind. Eng. Chem. Res., 51(37), 11881-11891. https://doi.org/10.1021/ie3003123.
  27. Deka, B.K., Kong, K., Seo, J., Kim, D., Park, Y. Bin and Park, H.W. (2015), "Controlled growth of CuO nanowires on woven carbon fibers and effects on the mechanical properties of woven carbon fiber/polyester composites", Compos. Part A Appl. S., 69, 56-63. https://doi.org/10.1016/j.compositesa.2014.11.001.
  28. Deng, H., Xu, F., Cheng, B., Yu, J. and Ho, W. (2020), "Photocatalytic CO2 reduction of C/ZnO nanofibers enhanced by an Ni-NiS cocatalyst", Nanoscale, 12(13), 7206-7213. https://doi.org/10.1039/c9nr10451h.
  29. Djurisic, A.B., Chen, X., Leung, Y.H. and Ng, A.M.C. (2012), "ZnO nanostructures: Growth, properties and applications", J. Mater. Chem., 22(14), 6526-6535. https://doi.org/10.1039/c2jm15548f.
  30. Duo, S., Li, Y., Liu, Z., Zhong, R., Liu, T. and Xu, H. (2017), "Preparation of ZnO from 2 D nanosheets to diverse 1 D nanorods and their structure, surface area, photocurrent, optical and photocatalytic properties by simple hydrothermal synthesis", J. Alloy Compd., 695, 2563-2579. https://doi.org/10.1016/j.jallcom.2016.11.162.
  31. Ehlert, G.J., Galan, U. and Sodano, H.A. (2013), "Role of surface chemistry in adhesion between ZnO nanowires and carbon fibers in hybrid composites", ACS Appl. Mater. Interf., https://doi.org/10.1021/am302060v.
  32. Ekrami, M., Magna, G., Emam-Djomeh, Z., Yarmand, M.S., Paolesse, R. and Di Natale, C. (2018), "Porphyrin-functionalized zinc oxide nanostructures for sensor applications", Sensors, 18(7), 2279. https://doi.org/10.3390/s18072279.
  33. Fan, J., Li, T. and Heng, H. (2014), "Hydrothermal growth and optical properties of ZnO nanoflowers", Mater. Res. Express, 1(4), 045024. https://doi.org/10.1088/2053-1591/1/4/045024.
  34. Favero, V.O., Oliveira, D.A., Lutkenhaus, J.L. and Siqueira, J.R. (2018), "Layer-by-layer nanostructured supercapacitor electrodes consisting of ZnO nanoparticles and multi-walled carbon nanotubes", J. Mater. Sci., 53(9), 6719-6728. https://doi.org/10.1007/s10853-018-2010-4.
  35. Foo, K.L., Hashim, U., Muhammad, K. and Voon, C.H. (2014), "Sol-gel synthesized zinc oxide nanorods and their structural and optical investigation for optoelectronic application", Nanosc. Res. Lett., 9(1), 1-10. https://doi.org/10.1186/1556-276X-9-429.
  36. Fujisawa, H., Kobayashi, C., Nakashima, S. and Shimizu, M. (2013), "Two-step growth of ZnO nanorods by using MOCVD and control of their diameters and surface densities", J. Korean Phys. Soc., 62(8), 1164-1168. https://doi.org/10.3938/jkps.62.1164.
  37. Ghasaban, S., Atai, M. and Imani, M. (2017), "Simple mass production of zinc oxide nanostructures via low-temperature hydrothermal synthesis", Mater. Res. Express, 4(3), https://doi.org/10.1088/2053-1591/aa5dcc.
  38. Goktas, S. and Goktas, A. (2021), "A comparative study on recent progress in efficient ZnO based nanocomposite and heterojunction photocatalysts: A review", J. Alloy Compd., 158734. https://doi.org/10.1016/j.jallcom.2021.158734.
  39. Gu, X., Li, C., Yuan, S., Ma, M., Qiang, Y. and Zhu, J. (2016), "ZnO based heterojunctions and their application in environmental photocatalysis", Nanotechnology, 27(40), 402001. https://doi.org/10.1088/0957-4484/27/40/402001.
  40. Guerra, A., Achour, A., Vizireanu, S., Dinescu, G., Messaci, S., Hadjersi, T., Boukherroub, R., Coffinier, Y. and Pireaux, J.J. (2019), "ZnO/Carbon nanowalls shell/core nanostructures as electrodes for supercapacitors", Appl. Surf. Sci., 481, 926-932. https://doi.org/10.1016/j.apsusc.2019.03.204.
  41. Guo, H., Zhang, W., Sun, Y., Zhou, T., Qiu, Y., Xu, K., Zhang, B. and Yang, H. (2015), "Double disks shaped ZnO microstructures synthesized by one-step CTAB assisted hydrothermal methods", Ceram. Int., 41. https://doi.org/10.1016/j.ceramint.2015.04.122.
  42. Guo, X., Zhao, Q., Li, R., Pan, H., Guo, X., Yin, A. and Dai, W. (2010), "Synthesis of ZnO nanoflowers and their wettabilities and photocatalytic properties", Opt. Express, 18(17), 18401-18406. https://doi.org/10.1364/OE.18.018401.
  43. Hahn, Y.B. (2011), "Zinc oxide nanostructures and their applications", Korean J. Chem. Eng., 28(9), 1797-1813. https://doi.org/10.1007/s11814-011-0213-3.
  44. Hasnidawani, J.N., Azlina, H.N., Norita, H., Bonnia, N.N., Ratim, S. and Ali, E.S. (2016), "Synthesis of ZnO nanostructures using sol-gel method", Procedia Chem., 19, 211-216. https://doi.org/10.1016/j.proche.2016.03.095.
  45. Hazarika, A., Deka, B.K., Kim, D.Y., Kong, K., Park, Y. Bin and Park, H.W. (2015), "Growth of aligned ZnO nanorods on woven Kevlar® fiber and its performance in woven Kevlar® fiber/polyester composites", Compos. Part A Appl S, 78, 284-293. https://doi.org/10.1016/j.compositesa.2015.08.022.
  46. Henry, M., Jolivet, J.P. and Livage, J. (1992), "Aqueous chemistry of metal cations: Hydrolysis, condensation and complexation", Chem. Spectroscopy Application Sol Gel Glass, 153-206. https://doi.org/10.1007/BFb0036968.
  47. Hilgendorff, M. (1998), "From ZnO colloids to nanocrystalline highly conductive films", J. Electrochem. Soc., 145(10), 3632. https://doi.org/10.1149/1.1838855.
  48. Hong, S.H., Kim, M.H., Yun, H.W., Paik, T. and Lee, H. (2017), "Solution-processed fabrication of superhydrophobic hierarchical zinc oxide nanostructures via nanotransfer printing and hydrothermal growth", Surf. Coat. Tech., 331, 189-195. https://doi.org/10.1016/j.surfcoat.2017.10.022.
  49. Hou, Y., Soleimanpour, A.M. and Jayatissa, A.H. (2013), "Low resistive aluminum doped nanocrystalline zinc oxide for reducing gas sensor application via sol-gel process", Sensor Actuat. B Chem., 177, 761-769. https://doi.org/10.1016/j.snb.2012.11.085.
  50. Hsu, C.L. and Chang, S.J. (2014), "Doped ZnO 1D nanostructures: Synthesis, properties and photodetector application", Small, 10(22), 4562-4585. https://doi.org/10.1002/smll.201401580.
  51. Hwang, S.H., Moon, K.J., Lee, T.Il, Lee, W. and Myoung, J.M. (2014), "Controlling phosphorus doping concentration in ZnO nanorods by low temperature hydrothermal method", Mater. Chem. Phys., 143(2), 600-604. https://doi.org/10.1016/j.matchemphys.2013.09.038.
  52. Jiang, S., Lin, K. and Cai, M. (2020), "ZnO Nanomaterials: Current advancements in antibacterial mechanisms and applications", Front. Chem., 8, 580. https://doi.org/10.3389/fchem.2020.00580.
  53. Jung, H.J., Lee, S., Yu, Y., Hong, S.M., Choi, H.C. and Choi, M.Y. (2012), "Low-temperature hydrothermal growth of ZnO nanorods on sol-gel prepared ZnO seed layers: Optimal growth conditions", Thin Solid Films, 524, 144-150. https://doi.org/10.1016/j.tsf.2012.10.007.
  54. Zak, A.K., Majid, W.A., Abrishami, M.E. and Yousefi, R. (2011), "X-ray analysis of ZnO nanoparticles by Williamson-Hall and size-strain plot methods", Solid State Sci., 13(1), 251-256. https://doi.org/10.1016/j.solidstatesciences.2010.11.024.
  55. Ko, S.H., Lee, D., Kang, H.W., Nam, K.H., Yeo, J.Y., Hong, S.J., Grigoropoulos, C.P. and Sung, H.J. (2011), "Nanoforest of hydrothermally grown hierarchical ZnO nanowires for a high efficiency dye-sensitized solar cell", Nano Lett., 11(2), 666-671. https://doi.org/10.1021/nl1037962.
  56. Kong, K., Deka, B.K., Kwak, S.K., Oh, A., Kim, H., Park, Y.B and Park, H.W. (2013), "Processing and mechanical characterization of ZnO/polyester woven carbon-fiber composites with different ZnO concentrations", Compos. Part A Appl. S, 55, 152-160. https://doi.org/10.1016/j.compositesa.2013.08.013.
  57. Kong, K., Seo, J., Deka, B.K. and Park, H.W. (2015), "Experimental study for the improvement of the impact property of carbon fiber composites", Trans. Korean Soc. Mech. Eng., 1641-1642.
  58. Kozuka, Y., Tsukazaki, A. and Kawasaki, M. (2014), "Challenges and opportunities of ZnO-related single crystalline heterostructures". Appl. Phys. Rev., 1(1), 011303. https://doi.org/10.1063/1.4853535.
  59. Krol, A., Pomastowski, P., Rafinska, K., Railean-Plugaru, V. and Buszewski, B. (2017), "Zinc oxide nanoparticles: Synthesis, antiseptic activity and toxicity mechanism", Adv. Colloid Interfac., 249, 37-52. https://doi.org/10.1016/j.cis.2017.07.033.
  60. Kumar, D., Rai, R.S. and Singh, N.K. (2020), "An innovative approach to deposit ultrathin ZnO nanoflakes (2D) through hydrothermal assisted electrochemical discharge deposition and growth method", Ceram. Int., 46(16), 26216-26220. https://doi.org/10.1016/j.ceramint.2020.07.009.
  61. Kumar, S.G. and Rao, K.S.R.K. (2015), "Zinc oxide based photocatalysis: Tailoring surface-bulk structure and related interfacial charge carrier dynamics for better environmental applications", RSC Adv., 5(5), 3306-3351. https://doi.org/10.1039/c4ra13299h.
  62. Kumar, S., Sahare, P.D. and Kumar, S. (2018), "Optimization of the CVD parameters for ZnO nanorods growth: Its photoluminescence and field emission properties", Mater. Res. Bull. 105, 237-245. https://doi.org/10.1016/j.materresbull.2018.05.002.
  63. Kwak, G., Seol, M., Tak, Y. and Yong, K. (2009), "Superhydrophobic ZnO nanowire surface: Chemical modification and effects of UV irradiation", J. Phys. Chem. C, 113(28), 12085-12089. https://doi.org/10.1021/jp900072s.
  64. Laurenti, M., Garino, N., Porro, S., Fontana, M. and Gerbaldi, C. (2015), "Zinc oxide nanostructures by chemical vapour deposition as anodes for Li-ion batteries", J. Alloy. Compd., 640, 321-326. https://doi.org/10.1016/j.jallcom.2015.03.222.
  65. Lavand, A.B. and Malghe, Y.S. (2015), "Synthesis, characterization and visible light photocatalytic activity of nitrogen-doped zinc oxide nanospheres", J. Asian Ceram. Soc., 3(3), 305-310. https://doi.org/10.1016/j.jascer.2015.06.002.
  66. Li, G., Wu, Y., Hong, Y., Zhao, X., Reyes, P.I. and Lu, Y. (2020), "Magnesium zinc oxide nanostructure-modified multifunctional sensors for full-scale dynamic monitoring of pseudomonas aeruginosa biofilm formation", ECS J. Solid State Sci. Technol., 9(11), 115026. https://doi.org/10.1149/2162-8777/abb795.
  67. Li, K., Zhou, X., Zhao, Z., Chen, C., Wang, C., Ren, B. and Zhang, L. (2018), "Synthesis of zirconium carbide whiskers by a combination of microwave hydrothermal and carbothermal reduction", J. Solid State Chem., 258, 383-390. https://doi.org/10.1016/j.jssc.2017.11.002.
  68. Liang, S., Zhu, L., Gai, G., Yao, Y., Huang, J., Ji, X., Zhou, X., Zhang, D. and Zhang, P. (2014), "Synthesis of morphology-controlled ZnO microstructures via a microwave-assisted hydrothermal method and their gas-sensing property", Ultrason. Sonochem., 21(4), 1335-1342. https://doi.org/10.1016/j.ultsonch.2014.02.007.
  69. Liang, Z., Cui, H., Wang, K., Yang, P., Zhang, L., Mai, W., Wang, C.-X. and Liu, P. (2012), "Morphology-controllable ZnOnanotubes and nanowires: synthesis, growth mechanism and hydrophobic property", Cryst. Eng. Comm, 14(5), 1723-1728. https://doi.org/10.1039/C2CE06045K.
  70. Liu, J., Wu, J., Zhou, C., Zhang, P., Guo, S., Li, S., Yang, Y., Li, K., Chen, L. and Wang, M. (2020), "Single-phase ZnCo2O4 derived ZnO-CoO mesoporous microspheres encapsulated by nitrogen-doped carbon shell as anode for high-performance lithium-ion batteries", J. Alloy Compds., 825, 153951. https://doi.org/10.1016/j.jallcom.2020.153951.
  71. Liu, T., Li, Y., Zhang, H., Wang, M., Fei, X., Duo, S., Chen, Y., Pan, J. and Wang, W. (2015), "Tartaric acid assisted hydrothermal synthesis of different flower-like ZnO hierarchical architectures with tunable optical and oxygen vacancy-induced photocatalytic properties", Appl. Surf. Sci., 357, 516-529. https://doi.org/10.1016/j.apsusc.2015.09.031.
  72. Lukovic Golic, D., Brankovic, G., Pocuca Nesic, M., Vojisavljevic, K., Recnik, A., Daneu, N., Bernik, S., Scepanovic, M., Poleti, D. and Brankovic, Z. (2011), "Structural characterization of self-assembled ZnO nanoparticles obtained by the sol-gel method from Zn(CH3COO)22H2O", Nanotechnology., 22(39), 395603. https://doi.org/10.1088/0957-4484/22/39/395603.
  73. Lv, Y., Zhang, Z., Yan, J., Zhao, W. and Zhai, C. (2018), "Al doping influences on fabricating ZnO nanowire arrays: Enhanced field emission property", Ceram. Int., 44(7), 7454-7460. https://doi.org/10.1016/j.ceramint.2018.01.118.
  74. Manzano, C.V., Alegre, D., Caballero-Calero, O., Alen, B. and Martin-Gonzalez, M.S. (2011), "Synthesis and luminescence properties of electrodeposited ZnO films", J. Appl. Phys., 110(4), 043538. https://doi.org/10.1063/1.3622627.
  75. Mittal, M., Sharma, M. and Pandey, O.P. (2014), "UV-Visible light induced photocatalytic studies of Cu doped ZnO nanoparticles prepared by co-precipitation method", Solar Energy, 110, 386-397. https://doi.org/10.1016/j.solener.2014.09.026.
  76. Monshi, A., Foroughi, M.R. and Monshi, M.R. (2012), "Modified Scherrer equation to estimate more accurately nano-crystallite size using XRD", World J. Nano Sci. Eng., 2(3), 154-160. https://doi.org/10.4236/wjnse.2012.23020.
  77. Moussa, H., Girot, E., Mozet, K., Alem, H., Medjahdi, G. and Schneider, R. (2016), "ZnO rods/reduced graphene oxide composites prepared via a solvothermal reaction for efficient sunlight-driven photocatalysis", Appl. Catal. B Environ., 185, 11-21. https://doi.org/10.1016/j.apcatb.2015.12.007.
  78. Naveed Ul Haq, A., Nadhman, A., Ullah, I., Mustafa, G., Yasinzai, M. and Khan, I. (2017), "Synthesis approaches of zinc oxide nanoparticles: the dilemma of ecotoxicity", J. Nanomater., 2017. https://doi.org/10.1155/2017/8510342.
  79. Noah, N.M. (2020), "Design and synthesis of nanostructured materials for sensor applications", J. Nanomater., 2020. https://doi.org/10.1155/2020/8855321.
  80. Ong, C.B., Ng, L.Y. and Mohammad, A.W. (2018), "A review of ZnO nanoparticles as solar photocatalysts: Synthesis, mechanisms and applications", Renew. Sust. Energ. Rev., 81, 536-551. https://doi.org/10.1016/j.rser.2017.08.020.
  81. Panda, D. and Tseng, T.Y. (2013), "One-dimensional ZnO nanostructures: Fabrication, optoelectronic properties and device applications", J. Mater. Sci., 48(20), 6849-6877. https://doi.org/10.1007/s10853-013-7541-0.
  82. Pant, H.R., Pant, B., Sharma, R.K., Amarjargal, A., Kim, H.J., Park, C.H., Tijing, L.D. and Kim, C.S. (2013), "Antibacterial and photocatalytic properties of Ag/TiO2/ZnO nano-flowers prepared by facile one-pot hydrothermal process", Ceram. Int., 39(2), 1503-1510. https://doi.org/10.1016/j.ceramint.2012.07.097.
  83. Pimentel, A., Samouco, A., Nunes, D., Araujo, A., Martins, R. and Fortunato, E. (2017), "Ultra-fast microwave synthesis of ZnO nanorods on cellulose substrates for UV sensor applications", Materials, 10(11), 1308. https://doi.org/10.3390/ma10111308.
  84. Pirhashemi, M., Habibi-Yangjeh, A. and Rahim Pouran, S. (2018), "Review on the criteria anticipated for the fabrication of highly efficient ZnO-based visible-light-driven photocatalysts", J. Ind. Eng. Chem., 62, 1-25. https://doi.org/10.1016/j.jiec.2018.01.012.
  85. Poongodi, G., Anandan, P., Kumar, R.M. and Jayavel, R. (2015), "Studies on visible light photocatalytic and antibacterial activities of nanostructured cobalt doped ZnO thin films prepared by sol-gel spin coating method", Spectrochim. Acta A, 148, 237-243. https://doi.org/10.1016/j.saa.2015.03.134.
  86. Poornaprakash, B., Chalapathi, U., Babu, S. and Park, S.H. (2017), "Structural, morphological, optical and magnetic properties of Gd-doped and (Gd, Mn) co-doped ZnO nanoparticles", Physica E, 93, 111-115. https://doi.org/10.1016/j.physe.2017.06.007.
  87. Pung, S.Y., Lee, W.P. and Aziz, A. (2012), "Kinetic study of organic dye degradation using ZnO particles with different morphologies as a photocatalyst", Int. J. Inorg. Chem., 2012. https://doi.org/10.1155/2012/608183.
  88. Qi, K., Cheng, B., Yu, J. and Ho, W. (2017), "Review on the improvement of the photocatalytic and antibacterial activities of ZnO", J. Alloy Compd., https://doi.org/10.1016/j.jallcom.2017.08.142.
  89. Rai, R.C. (2013), "Analysis of the Urbach tails in absorption spectra of undoped ZnO thin films", J. Appl. Phys., 113(15), 153508. https://doi.org/10.1063/1.4801900.
  90. Rai, R.S. and Bajpai, V. (2019), "Fabrication of ZnO nanostructures on woven carbon fiber via hydrothermal route and effect of synthesis conditions on morphology", International Conference on Precision, Meso, Micro and Nano Engineering, 1-4.
  91. Rai, R.S. and Bajpai, V. (2020), "Hydrothermally grown ZnO NSs on Bi-Directional woven carbon fiber and effect of synthesis parameters on morphology", Ceram. Int., 47(6), 8208-8217. https://doi.org/10.1016/j.ceramint.2020.11.180.
  92. Ramimoghadam, D., Bin Hussein, M.Z. and Taufiq-Yap, Y.H. (2013), "Hydrothermal synthesis of zinc oxide nanoparticles using rice as soft biotemplate", Chem. Central J., 7(1), 1-10. https://doi.org/10.1186/1752-153X-7-136.
  93. Rangel-Mendez, J.R., Matos, J., Chazaro-Ruiz, L.F., Gonzalez-Castillo, A.C. and Barrios-Yanez, G. (2018), "Microwaveassisted synthesis of C-doped TiO2and ZnO hybrid nanostructured materials as quantum-dots sensitized solar cells", Appl. Surf. Sci., 434, 744-755. https://doi.org/10.1016/j.apsusc.2017.10.236.
  94. Ren, Q., Cao, Y.-Q., Arulraj, D., Liu, C., Wu, D., Li, W.-M. and Li, A.-D. (2020), "Resistive-type hydrogen sensors based on zinc oxide nanostructures", J. Electrochem. Soc., 167(6), 067528. https://doi.org/10.1149/1945-7111/ab7e23.
  95. Sabry, R.S. and AbdulAzeez, O. (2013), "Hydrothermal growth of ZnO nano rods without catalysts in a single step", Manuf. Lett., 2(1), 69-73. https://doi.org/10.1016/j.mfglet.2014.02.001.
  96. Salahuddin, N.A., El-kemary, M. and Ibrahim, E.M. (2015), "Synthesis and characterization of ZnO nanotubes by hydrothermal method", Int. J. Sci. Res. Publ., 5(9), 3-6.
  97. Samadi, M., Zirak, M., Naseri, A., Khorashadizade, E. and Moshfegh, A.Z. (2016), "Recent progress on doped ZnO nanostructures for visible-light photocatalysis", Thin Solid Films, 605, 2-19. https://doi.org/10.1016/j.tsf.2015.12.064.
  98. Samuel, E., Joshi, B., Kim, M.W., Kim, Y. Il, Swihart, M.T. and Yoon, S.S. (2019), "Hierarchical zeolitic imidazolate framework-derived manganese-doped zinc oxide decorated carbon nanofiber electrodes for high performance flexible supercapacitors", Chem. Eng. J., 371, 657-665. https://doi.org/10.1016/j.cej.2019.04.065.
  99. Sanchez Zeferino, R., Barboza Flores, M. and Pal, U. (2011), "Photoluminescence and raman scattering in ag-doped zno nanoparticles", J. Appl. Phys., 109(1), 014308. https://doi.org/10.1063/1.3530631.
  100. Sathya, M. and Pushpanathan, K. (2017), "Synthesis and optical properties of Pb doped ZnO nanoparticles", Appl. Surf. Sci., 449, 346-357. https://doi.org/10.1016/j.apsusc.2017.11.127.
  101. Sayari, A. and El Mir, L. (2015), "Structural and optical characterization of Ni and Al co-doped ZnO nanopowders synthesized via the sol-gel process", KONA Powder Particle J., 32(32), 154-162. https://doi.org/10.14356/kona.2015003.
  102. Schmidt, R., Gonjal, J.P. and Moran, E. (2015), "Microwaves: Microwave assisted hydrothermal synthesis of nanoparticles", Concise Encyclopedia Nanotechnol., 12, 561-572.
  103. Shetti, N.P., Bukkitgar, S.D., Reddy, K.R., Reddy, C.V. and Aminabhavi, T.M. (2019), "ZnO-based nanostructured electrodes for electrochemical sensors and biosensors in biomedical applications", Biosens. Bioelectron., 141, 111417. https://doi.org/10.1016/j.bios.2019.111417.
  104. Shirvanimoghaddam, K., Hamim, S.U., Karbalaei Akbari, M., Fakhrhoseini, S.M., Khayyam, H., Pakseresht, A.H., Ghasali, E., Zabet, M., Munir, K.S., Jia, S., Davim, J.P. and Naebe, M. (2017), "Carbon fiber reinforced metal matrix composites: Fabrication processes and properties", Compos. Part A Appl. S., 92, 70-96. https://doi.org/10.1016/j.compositesa.2016.10.032.
  105. Sin, J.C. and Lam, S.M. (2016), "Hydrothermal synthesis of europium-doped flower-like ZnO hierarchical structures with enhanced sunlight photocatalytic degradation of phenol", Mater. Lett., 182, 223-226. https://doi.org/10.1016/j.matlet.2016.06.126.
  106. Sirelkhatim, A., Mahmud, S., Seeni, A., Kaus, N.H.M., Ann, L.C., Bakhori, S.K.M., Hasan, H. and Mohamad, D. (2015), "Review on zinc oxide nanoparticles: Antibacterial activity and toxicity mechanism", Nano. Lett., 7(3), 219-242. https://doi.org/10.1007/s40820-015-0040-x.
  107. Sun, C., Shi, J. and Wang, X. (2010), "Fundamental study of mechanical energy harvesting using piezoelectric nanostructures", J. Appl. Phys., 108(3), 034309.https://doi.org/10.1063/1.3462468.
  108. Sun, L., Shao, R., Chen, Z., Tang, L., Dai, Y. and Ding, J. (2012), "Alkali-dependent synthesis of flower-like ZnO structures with enhanced photocatalytic activity via a facile hydrothermal method", Appl. Surf. Sci., 258(14), 5455-5461. https://doi.org/10.1016/j.apsusc.2012.02.034.
  109. Sun, Y., Guo, H., Zhang, W., Zhou, T., Qiu, Y., Xu, K., Zhang, B. and Yang, H. (2016), "Synthesis and characterization of twinned flower-like ZnO structures grown by hydrothermal methods", Ceram. Int., 42(8), 9648-9652. https://doi.org/10.1016/j.ceramint.2016.03.051.
  110. Hasanpoor, M., Aliofkhazraei, M. and Delavari, H (2015), "Microwave assisted synthesis of Zinc oxide nanoparticles", Procedia Mater. Sci., 11, 320-325. https://doi.org/10.1016/j.mspro.2015.11.101.
  111. Theerthagiri, J., Salla, S., Senthil, R.A., Nithyadharseni, P., Madankumar, A., Arunachalam, P., Maiyalagan, T. and Kim, H.S. (2019), "A review on ZnO nanostructured materials: Energy, environmental and biological applications", Nanotechnology, 30(39), 392001. https://doi.org/10.1088/1361-6528/ab268a.
  112. Tokumoto, M.S., Briois, V., Santilli, C.V. and Pulcinelli, S.H. (2003), "Preparation of ZnO nanoparticles: Structural study of the molecular precursor", J. Sol Gel Sci. Technol., 26(1), 547-551. https://doi.org/10.1023/A:1020711702332.
  113. Kang, M. and Kim, H.S. (2016), "Microwave-assisted facile and ultrafast growth of ZnO nanostructures and proposition of alternative microwave-assisted methods to address growth stoppage", Scientific Reports, 6(1), 1-13. https://doi.org/10.1038/srep24870.
  114. Umar, A., Algarni, H., Kim, S. H. and Al-Assiri, M.S. (2016), "Time dependent growth of ZnO nanoflowers with enhanced field emission properties", Ceram. Int., 42(11), 13215-13222. https://doi.org/10.1016/j.ceramint.2016.05.114.
  115. Velayutham, T.S., Abd Majid, W.H., Gan, W.C., Khorsand Zak, A. and Gan, S.N. (2012), "Theoretical and experimental approach on dielectric properties of ZnO nanoparticles and polyurethane/ZnO nanocomposites", J. Appl. Phys., 112(5), 054106. https://doi.org/10.1063/1.4749414.
  116. Venkatesha, T.G., Arthoba Nayaka, Y., Viswanatha, R., Vidyasagar, C.C. and Chethana, B.K. (2012), "Electrochemical synthesis and photocatalytic behavior of flower shaped ZnO microstructures", Powder Technol., 225, 232-238. https://doi.org/10.1016/j.powtec.2012.04.021.
  117. Wang, F., Qin, X., Guo, Z., Meng, Y., Yang, L. and Ming, Y. (2013), "Hydrothermal synthesis of dumbbell-shaped ZnO microstructures", Ceram. Int., 39(8), 8969-8973. https://doi.org/10.1016/j.ceramint.2013.04.096.
  118. Wang, M., Ren, F., Zhou, J., Cai, G., Cai, L., Hu, Y., Wang, D., Liu, Y., Guo, L. and Shen, S. (2015), "N doping to ZnO nanorods for photoelectrochemical water splitting under visible light: engineered impurity distribution and terraced band structure", Scientific Reports, 5(1), 1-13. https://doi.org/10.1038/srep12925.
  119. Wang, R. Z., Zhao, W. and Yan, H. (2017), "Generalized mechanism of field emission from nanostructured semiconductor film cathodes", Scientific Reports, 7(1), 1-8. https://doi.org/10.1038/srep43625.
  120. Wang, S., Kuang, P., Cheng, B., Yu, J. and Jiang, C. (2018), "ZnO hierarchical microsphere for enhanced photocatalytic activity", J. Alloy Compd., 741, 622-632.https://doi.org/10.1016/j.jallcom.2018.01.141.
  121. Wang, X., Ahmad, M. and Sun, H. (2017), "Three-dimensional ZnO hierarchical nanostructures: Solution phase synthesis and applications", Materials, 10(11), 1-24. https://doi.org/10.3390/ma10111304.
  122. Wang, Y., Feng, J., Wang, H., Zhang, M., Yang, X., Yuan, R. and Chai, Y. (2020), "Fabricating porous ZnO/Co3O4 microspheres coated with N-doped carbon by a simple method as high capacity anode", J. Electroanal. Chem., 873, 114479. https://doi.org/10.1016/j.jelechem.2020.114479.
  123. Wang, Z.L. (2004), "Zinc oxide nanostructures: Growth, properties and applications", J. Phys. Condens. Mat., 16(25), https://doi.org/10.1088/0953-8984/16/25/R01.
  124. Wei, Y., Wang, X., Yi, G., Zhou, L., Cao, J., Sun, G., Chen, Z., Bala, H. and Zhang, Z. (2017), "Hydrothermal synthesis of Ag modified ZnO nanorods and their enhanced ethanol-sensing properties", Mater. Sci. Semiconduct. Proc., 75, 327-333. https://doi.org/10.1016/j.mssp.2017.11.007.
  125. Weldegebrieal, G.K. (2020), "Synthesis method, antibacterial and photocatalytic activity of ZnO nanoparticles for azo dyes in wastewater treatment: A review", Inorg. Chem. Commun., 108140. https://doi.org/10.1016/j.inoche.2020.108140.
  126. Witkowski, B.S., Dluzewski, P., Kaszewski, J., Wachnicki, L., Gieraltowska, S., Kurowska, B. and Godlewski, M. (2018), "Ultra-fast epitaxial growth of ZnO nano/microrods on a GaN substrate, using the microwave-assisted hydrothermal method", Mater. Chem. Phys., 205, 16-22. https://doi.org/10.1016/j.matchemphys.2017.11.005.
  127. Wu, Y., Hermkens, P.M., Van De Loo, B.W.H., Knoops, H.C.M., Potts, S.E., Verheijen, M.A., Roozeboom, F. and Kessels, W.M.M. (2013), "Electrical transport and Al doping efficiency in nanoscale ZnO films prepared by atomic layer deposition", J. Appl. Phys., 114(2), 024308. https://doi.org/10.1063/1.4813136.
  128. Xiao, L., Li, E., Yi, J., Meng, W., Wang, S., Deng, B. and Liu, J. (2018), "Enhancing the performance of nanostructured ZnO as an anode material for lithium-ion batteries by polydopamine-derived carbon coating and confined crystallization", J. Alloy Compd., 764, 545-554. https://doi.org/10.1016/j.jallcom.2018.06.081.
  129. Xu, C.L. and Wang, Y.Z. (2018), "Self-assembly of stearic acid into nano flowers induces the tunable surface wettability of polyimide film", Mater. Des., 138, 30-38. https://doi.org/10.1016/j.matdes.2017.10.057.
  130. Xu, S. and Wang, Z.L. (2011), "One-dimensional ZnO nanostructures: Solution growth and functional properties", Nano Res, 4(11), 1013-1098. https://doi.org/10.1007/s12274-011-0160-7.
  131. Yilmaz, M. (2015), "Investigation of characteristics of ZnO:Ga nanocrystalline thin films with varying dopant content", Mater. Sci. Semiconduct. Proc., 40, 99-106. https://doi.org/10.1016/j.mssp.2015.06.031.
  132. Yilmaz, M., Bozkurt Cirak, B., Cirak, C. and Aydogan, S. (2016), "Hydrothermal growth of ZnO nanoparticles under different conditions", Phil. Mag. Lett., 96(2), 45-51. https://doi.org/10.1080/09500839.2016.1144938.
  133. Yoo, R., Yoo, S., Lee, D., Kim, J., Cho, S. and Lee, W. (2017), "Highly selective detection of dimethyl methylphosphonate (DMMP) using CuO nanoparticles /ZnO flowers heterojunction", Sensor Actuat. B Chem., 240, 1099-1105. https://doi.org/10.1016/j.snb.2016.09.028.
  134. Yu, W., Zhang, J. and Peng, T. (2016), "New insight into the enhanced photocatalytic activity of N-, C- and S-doped ZnO photocatalysts", Appl. Catal. B Environ., 181, 220-227. https://doi.org/10.1016/j.apcatb.2015.07.031.
  135. Yuan, G., Xiang, J., Jin, H., Wu, L., Jin, Y. and Zhao, Y. (2018), "Anchoring ZnO nanoparticles in nitrogen-doped graphene sheets as a high-performance anode material for lithium-ion batteries", Materials, 11(1), 96. https://doi.org/10.3390/ma11010096.
  136. Yun, H., Zhou, X., Zhu, H. and Zhang, M. (2021), "One-dimensional zinc-manganate oxide hollow nanostructures with enhanced supercapacitor performance", J. Colloid Interf. Sci., 585, 138-147. https://doi.org/10.1016/j.jcis.2020.11.060.
  137. Yusof, N.A.A., Zain, N.M. and Pauzi, N. (2019), "Synthesis of ZnO nanoparticles with chitosan as stabilizing agent and their antibacterial properties against Gram-positive and Gram-negative bacteria", Int. J. Biol. Macromol., 124, 1132-1136. https://doi.org/10.1016/j.ijbiomac.2018.11.228.
  138. Zhao, X., Li, M. and Lou, X. (2014), "Sol-gel assisted hydrothermal synthesis of ZnO microstructures: Morphology control and photocatalytic activity", Adv. Powder Technol., 25(1), 372-378. https://doi.org/10.1016/j.apt.2013.06.004.
  139. Zheng, N., Huang, Y., Sun, W., Du, X., Liu, H.Y., Moody, S., Gao, J. and Mai, Y.W. (2016), "In-situ pull-off of ZnO nanowire from carbon fiber and improvement of interlaminar toughness of hierarchical ZnO nanowire/carbon fiber hydrid composite laminates", Carbon, 110, 69-78. https://doi.org/10.1016/j.carbon.2016.09.002.
  140. Zhu, P., Yin, X., Gao, X., Dong, G., Xu, J. and Wang, C. (2020), "Enhanced photocatalytic NO removal and toxic NO2 production inhibition over ZIF-8-derived ZnO nanoparticles with controllable amount of oxygen vacancies", Chinese J. Catal., 42(1), 175-183. https://doi.org/10.1016/S1872-2067(20)63592-6.
  141. Zhu, Z., Yang, D. and Liu, H. (2011), "Microwave-assisted hydrothermal synthesis of ZnO rod-assembled microspheres and their photocatalytic performances", Adv. Powder Technol., 22(4), 493-497. https://doi.org/10.1016/j.apt.2010.07.002.
  142. Znaidi, L. (2010), "Sol-gel-deposited ZnO thin films: A review", Mater. Sci. Eng. B, 174(1-3), 18-30. https://doi.org/10.1016/j.mseb.2010.07.001.