Browse > Article
http://dx.doi.org/10.12989/anr.2021.11.1.037

Recent advances in ZnO nanostructures and their future perspective  

Rai, Ravi S. (Department of Mechanical Engineering, Indian Institute of Technology (Indian School of Mines) Dhanbad)
Bajpai, Vivek (Department of Mechanical Engineering, Indian Institute of Technology (Indian School of Mines) Dhanbad)
Publication Information
Advances in nano research / v.11, no.1, 2021 , pp. 37-54 More about this Journal
Abstract
This review addresses the recent developments of the processing of ZnO nanostructures (NSs) and characterizations of the developed NSs by various techniques, mainly hydrothermal technique. This article discussed various kinds of ZnO NSs such as wires, rods, flowers, dumbbells, spheres, particles and combs created by hydrothermal process on carbon fibre substrate. ZnO likely has the wealthiest group of NSs among all materials, both in structures and properties. The NSs could have novel applications in sensors, transducers, optoelectronics, and biomedical sciences. This article moreover studies the distinctive NSs of ZnO created by the different procedures and upgrades in the mechanical, electrical and thermal properties of the subsequent progressive composites. ZnO NSs processed on any substrate makes a hierarchical structure and can altogether enhance the specific properties in the final nanocomposites. Article also discussed the potential of ZnO NSs for fiber reinforced nanocomposites, focusing on the most used techniques used for the creation of ZnO NSs reinforced hierarchical composites and surveys the potential for another age of cutting edge multifunctional materials. Recent concepts used for improving or synthesizing other distinctive NSs having tailored properties are also explained in the article.
Keywords
hydrothermal process; nanocomposites; nanostructures; zinc-oxide;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Naveed Ul Haq, A., Nadhman, A., Ullah, I., Mustafa, G., Yasinzai, M. and Khan, I. (2017), "Synthesis approaches of zinc oxide nanoparticles: the dilemma of ecotoxicity", J. Nanomater., 2017. https://doi.org/10.1155/2017/8510342.   DOI
2 Noah, N.M. (2020), "Design and synthesis of nanostructured materials for sensor applications", J. Nanomater., 2020. https://doi.org/10.1155/2020/8855321.   DOI
3 Bhattacharyya, P., Agarwal, B., Goswami, M., Maiti, D., Baruah, S. and Tribedi, P. (2017), "Zinc oxide nanoparticle inhibits the biofilm formation of Streptococcus pneumoniae", Antonie van Leeuwenhoek, 111(1), 89-99. https://doi.org/10.1007/s10482-017-0930-7.   DOI
4 Brintha, S.R. and Ajitha, M. (2015), "Synthesis and characterization of ZnO nanoparticles via aqueous solution, sol-gel and hydrothermal methods", IOSR J. Appl. Chem., 8(11), 66-72. https://doi.org/10.9790/5736-081116672.
5 Caglar, Y., Gorgun, K. and Aksoy, S. (2015), "Effect of deposition parameters on the structural properties of ZnO nanopowders prepared by microwave-assisted hydrothermal synthesis", Spectrochim. Acta A, 138, 617-622. https://doi.org/10.1016/j.saa.2014.12.008.   DOI
6 Poongodi, G., Anandan, P., Kumar, R.M. and Jayavel, R. (2015), "Studies on visible light photocatalytic and antibacterial activities of nanostructured cobalt doped ZnO thin films prepared by sol-gel spin coating method", Spectrochim. Acta A, 148, 237-243. https://doi.org/10.1016/j.saa.2015.03.134.   DOI
7 Kwak, G., Seol, M., Tak, Y. and Yong, K. (2009), "Superhydrophobic ZnO nanowire surface: Chemical modification and effects of UV irradiation", J. Phys. Chem. C, 113(28), 12085-12089. https://doi.org/10.1021/jp900072s.   DOI
8 Pant, H.R., Pant, B., Sharma, R.K., Amarjargal, A., Kim, H.J., Park, C.H., Tijing, L.D. and Kim, C.S. (2013), "Antibacterial and photocatalytic properties of Ag/TiO2/ZnO nano-flowers prepared by facile one-pot hydrothermal process", Ceram. Int., 39(2), 1503-1510. https://doi.org/10.1016/j.ceramint.2012.07.097.   DOI
9 Pimentel, A., Samouco, A., Nunes, D., Araujo, A., Martins, R. and Fortunato, E. (2017), "Ultra-fast microwave synthesis of ZnO nanorods on cellulose substrates for UV sensor applications", Materials, 10(11), 1308. https://doi.org/10.3390/ma10111308.   DOI
10 Qi, K., Cheng, B., Yu, J. and Ho, W. (2017), "Review on the improvement of the photocatalytic and antibacterial activities of ZnO", J. Alloy Compd., https://doi.org/10.1016/j.jallcom.2017.08.142.   DOI
11 Rai, R.C. (2013), "Analysis of the Urbach tails in absorption spectra of undoped ZnO thin films", J. Appl. Phys., 113(15), 153508. https://doi.org/10.1063/1.4801900.   DOI
12 Rai, R.S. and Bajpai, V. (2020), "Hydrothermally grown ZnO NSs on Bi-Directional woven carbon fiber and effect of synthesis parameters on morphology", Ceram. Int., 47(6), 8208-8217. https://doi.org/10.1016/j.ceramint.2020.11.180.   DOI
13 Ren, Q., Cao, Y.-Q., Arulraj, D., Liu, C., Wu, D., Li, W.-M. and Li, A.-D. (2020), "Resistive-type hydrogen sensors based on zinc oxide nanostructures", J. Electrochem. Soc., 167(6), 067528. https://doi.org/10.1149/1945-7111/ab7e23.   DOI
14 Zhu, P., Yin, X., Gao, X., Dong, G., Xu, J. and Wang, C. (2020), "Enhanced photocatalytic NO removal and toxic NO2 production inhibition over ZIF-8-derived ZnO nanoparticles with controllable amount of oxygen vacancies", Chinese J. Catal., 42(1), 175-183. https://doi.org/10.1016/S1872-2067(20)63592-6.   DOI
15 Yilmaz, M. (2015), "Investigation of characteristics of ZnO:Ga nanocrystalline thin films with varying dopant content", Mater. Sci. Semiconduct. Proc., 40, 99-106. https://doi.org/10.1016/j.mssp.2015.06.031.   DOI
16 Yu, W., Zhang, J. and Peng, T. (2016), "New insight into the enhanced photocatalytic activity of N-, C- and S-doped ZnO photocatalysts", Appl. Catal. B Environ., 181, 220-227. https://doi.org/10.1016/j.apcatb.2015.07.031.   DOI
17 Yusof, N.A.A., Zain, N.M. and Pauzi, N. (2019), "Synthesis of ZnO nanoparticles with chitosan as stabilizing agent and their antibacterial properties against Gram-positive and Gram-negative bacteria", Int. J. Biol. Macromol., 124, 1132-1136. https://doi.org/10.1016/j.ijbiomac.2018.11.228.   DOI
18 Chen, Y., Wang, Y., Fang, J., Dai, B., Kou, J., Lu, C. and Zhao, Y. (2020), "Design of a ZnO/Poly(vinylidene fluoride) inverse opal film for photon localization-assisted full solar spectrum photocatalysis", Chinese J. Catal., 42(1), 184-192. https://doi.org/10.1016/S1872-2067(20)63588-4.   DOI
19 Chen, Q., Sun, Y., Wang, Y., Cheng, H. and Wang, Q.M. (2013), "ZnO nanowires-polyimide nanocomposite piezoresistive strain sensor", Sensor Actuat. A Phys., 190, 161-167. https://doi.org/10.1016/j.sna.2012.11.006.   DOI
20 Cheng, S., Hill, F.A., Heubel, E.V. and Velasquez-Garcia, L.F. (2015), "Low-bremsstrahlung X-ray source using a low-voltage high-current-density nanostructured field emission cathode and a transmission anode for markerless soft tissue imaging", J. Microelectromech. S., 24(2), 373-383. https://doi.org/10.1109/JMEMS.2014.2332176.   DOI
21 Dantas, M.O.S., Criado, D., Zuniga, A., Silva, W.A.A., Galeazzo, E., Peres, H.E.M. and Kopelvski, M.M. (2020), "ZnO nanowire-based field emission devices through a microelectronic compatible route", J. Integr. Circuit Syst., 15(1), 1-6. https://doi.org/10.29292/jics.v15i1.105.   DOI
22 Deng, H., Xu, F., Cheng, B., Yu, J. and Ho, W. (2020), "Photocatalytic CO2 reduction of C/ZnO nanofibers enhanced by an Ni-NiS cocatalyst", Nanoscale, 12(13), 7206-7213. https://doi.org/10.1039/c9nr10451h.   DOI
23 Yoo, R., Yoo, S., Lee, D., Kim, J., Cho, S. and Lee, W. (2017), "Highly selective detection of dimethyl methylphosphonate (DMMP) using CuO nanoparticles /ZnO flowers heterojunction", Sensor Actuat. B Chem., 240, 1099-1105. https://doi.org/10.1016/j.snb.2016.09.028.   DOI
24 Sabry, R.S. and AbdulAzeez, O. (2013), "Hydrothermal growth of ZnO nano rods without catalysts in a single step", Manuf. Lett., 2(1), 69-73. https://doi.org/10.1016/j.mfglet.2014.02.001.   DOI
25 Sathya, M. and Pushpanathan, K. (2017), "Synthesis and optical properties of Pb doped ZnO nanoparticles", Appl. Surf. Sci., 449, 346-357. https://doi.org/10.1016/j.apsusc.2017.11.127.   DOI
26 Shetti, N.P., Bukkitgar, S.D., Reddy, K.R., Reddy, C.V. and Aminabhavi, T.M. (2019), "ZnO-based nanostructured electrodes for electrochemical sensors and biosensors in biomedical applications", Biosens. Bioelectron., 141, 111417. https://doi.org/10.1016/j.bios.2019.111417.   DOI
27 Sirelkhatim, A., Mahmud, S., Seeni, A., Kaus, N.H.M., Ann, L.C., Bakhori, S.K.M., Hasan, H. and Mohamad, D. (2015), "Review on zinc oxide nanoparticles: Antibacterial activity and toxicity mechanism", Nano. Lett., 7(3), 219-242. https://doi.org/10.1007/s40820-015-0040-x.   DOI
28 Sun, Y., Guo, H., Zhang, W., Zhou, T., Qiu, Y., Xu, K., Zhang, B. and Yang, H. (2016), "Synthesis and characterization of twinned flower-like ZnO structures grown by hydrothermal methods", Ceram. Int., 42(8), 9648-9652. https://doi.org/10.1016/j.ceramint.2016.03.051.   DOI
29 Chow, L., Lupan, O., Chai, G., Khallaf, H., Ono, L.K., Roldan Cuenya, B., Tiginyanu, I.M., Ursaki, V.V., Sontea, V. and Schulte, A. (2013), "Synthesis and characterization of Cu-doped ZnO one-dimensional structures for miniaturized sensor applications with faster response", Sensor Actuat., A Phys., 189, 399-408. https://doi.org/10.1016/j.sna.2012.09.006.   DOI
30 Absalan, H. and Ghodsi, F.E. (2012), "Comparative study of ZnO thin films prepared by different sol-gel route", Iran. J. Phys. Res., 11(4),
31 Das, G., Deka, B.K., Lee, S.H., Park, Y. and Yoon, Y.S. (2015), "Poly (vinyl alcohol)/silica nanoparticles based anion-conducting nanocomposite membrane for fuel-cell applications", Macromol. Res., 23(3), 256-264. https://doi.org/10.1007/s13233-015-3033-1.   DOI
32 Ehlert, G.J., Galan, U. and Sodano, H.A. (2013), "Role of surface chemistry in adhesion between ZnO nanowires and carbon fibers in hybrid composites", ACS Appl. Mater. Interf., https://doi.org/10.1021/am302060v.   DOI
33 Das, S., Das, S. and Sutradhar, S. (2017), "Effect of Gd3+and Al3+on optical and dielectric properties of ZnO nanoparticle prepared by two-step hydrothermal method", Ceram. Int., 43(9), 6932-6941. https://doi.org/10.1016/j.ceramint.2017.02.116.   DOI
34 Guerra, A., Achour, A., Vizireanu, S., Dinescu, G., Messaci, S., Hadjersi, T., Boukherroub, R., Coffinier, Y. and Pireaux, J.J. (2019), "ZnO/Carbon nanowalls shell/core nanostructures as electrodes for supercapacitors", Appl. Surf. Sci., 481, 926-932. https://doi.org/10.1016/j.apsusc.2019.03.204.   DOI
35 Djurisic, A.B., Chen, X., Leung, Y.H. and Ng, A.M.C. (2012), "ZnO nanostructures: Growth, properties and applications", J. Mater. Chem., 22(14), 6526-6535. https://doi.org/10.1039/c2jm15548f.   DOI
36 Wang, M., Ren, F., Zhou, J., Cai, G., Cai, L., Hu, Y., Wang, D., Liu, Y., Guo, L. and Shen, S. (2015), "N doping to ZnO nanorods for photoelectrochemical water splitting under visible light: engineered impurity distribution and terraced band structure", Scientific Reports, 5(1), 1-13. https://doi.org/10.1038/srep12925.   DOI
37 Tokumoto, M.S., Briois, V., Santilli, C.V. and Pulcinelli, S.H. (2003), "Preparation of ZnO nanoparticles: Structural study of the molecular precursor", J. Sol Gel Sci. Technol., 26(1), 547-551. https://doi.org/10.1023/A:1020711702332.   DOI
38 Kang, M. and Kim, H.S. (2016), "Microwave-assisted facile and ultrafast growth of ZnO nanostructures and proposition of alternative microwave-assisted methods to address growth stoppage", Scientific Reports, 6(1), 1-13. https://doi.org/10.1038/srep24870.   DOI
39 Velayutham, T.S., Abd Majid, W.H., Gan, W.C., Khorsand Zak, A. and Gan, S.N. (2012), "Theoretical and experimental approach on dielectric properties of ZnO nanoparticles and polyurethane/ZnO nanocomposites", J. Appl. Phys., 112(5), 054106. https://doi.org/10.1063/1.4749414.   DOI
40 Al-Ruqeishi, M.S., Mohiuddin, T., Al-Habsi, B., Al-Ruqeishi, F., Al-Fahdi, A. and Al-Khusaibi, A. (2019), "Piezoelectric nanogenerator based on ZnO nanorods". Arab. J. Chem., 12(8), 5173-5179. https://doi.org/10.1016/j.arabjc.2016.12.010.   DOI
41 Amin, G., Asif, M.H., Zainelabdin, A., Zaman, S., Nur, O. and Willander, M. (2011), "Influence of pH, precursor concentration, growth time and temperature on the morphology of ZnO nanostructures grown by the hydrothermal method", J. Nanomater., 2011. https://doi.org/10.1155/2011/269692.   DOI
42 Baruah, S. and Dutta, J. (2009), "Hydrothermal growth of ZnO nanostructures", Sci. Technol. Adv. Mat., 10(1), https://doi.org/10.1088/1468-6996/10/1/013001.   DOI
43 Das, S., Bandyopadhyay, A., Das, S., Das, D. and Sutradhar, S. (2018), "Defect induced room-temperature ferromagnetism and enhanced dielectric property in nanocrystalline ZnO co-doped with Tb and Co", J. Alloy Compd., 731, 591-599. https://doi.org/10.1016/j.jallcom.2017.10.057.   DOI
44 Baruwati, B., Kumar, D.K. and Manorama, S.V. (2006), "Hydrothermal synthesis of highly crystalline ZnO nanoparticles: A competitive sensor for LPG and EtOH", Sensor Actuat. B Chem., 119(2), 676-682. https://doi.org/10.1016/j.snb.2006.01.028.   DOI
45 Boro, B., Gogoi, B., Rajbongshi, B. M. and Ramchiary, A. (2018), "Nano-structured TiO2/ZnO nanocomposite for dye-sensitized solar cells application: A review", Renew. Sust. Energ. Rev., 81, 2264-2270. https://doi.org/10.1016/j.rser.2017.06.035   DOI
46 Byzynski, G., Pereira, A.P., Volanti, D.P., Ribeiro, C. and Longo, E. (2018), "High-performance ultraviolet-visible driven ZnO morphologies photocatalyst obtained by microwave-assisted hydrothermal method", J. Photoch. Photobio. A, 353, 358-367. https://doi.org/10.1016/j.jphotochem.2017.11.032.   DOI
47 Deka, B.K., Kong, K., Seo, J., Kim, D., Park, Y. Bin and Park, H.W. (2015), "Controlled growth of CuO nanowires on woven carbon fibers and effects on the mechanical properties of woven carbon fiber/polyester composites", Compos. Part A Appl. S., 69, 56-63. https://doi.org/10.1016/j.compositesa.2014.11.001.   DOI
48 Deka, B.K., Mandal, M. and Maji, T.K. (2012), "Effect of nanoparticles on flammability, UV resistance, biodegradability and chemical resistance of wood polymer nanocomposite", Ind. Eng. Chem. Res., 51(37), 11881-11891. https://doi.org/10.1021/ie3003123.   DOI
49 Fan, J., Li, T. and Heng, H. (2014), "Hydrothermal growth and optical properties of ZnO nanoflowers", Mater. Res. Express, 1(4), 045024. https://doi.org/10.1088/2053-1591/1/4/045024.   DOI
50 Favero, V.O., Oliveira, D.A., Lutkenhaus, J.L. and Siqueira, J.R. (2018), "Layer-by-layer nanostructured supercapacitor electrodes consisting of ZnO nanoparticles and multi-walled carbon nanotubes", J. Mater. Sci., 53(9), 6719-6728. https://doi.org/10.1007/s10853-018-2010-4.   DOI
51 Li, G., Wu, Y., Hong, Y., Zhao, X., Reyes, P.I. and Lu, Y. (2020), "Magnesium zinc oxide nanostructure-modified multifunctional sensors for full-scale dynamic monitoring of pseudomonas aeruginosa biofilm formation", ECS J. Solid State Sci. Technol., 9(11), 115026. https://doi.org/10.1149/2162-8777/abb795.   DOI
52 Ghasaban, S., Atai, M. and Imani, M. (2017), "Simple mass production of zinc oxide nanostructures via low-temperature hydrothermal synthesis", Mater. Res. Express, 4(3), https://doi.org/10.1088/2053-1591/aa5dcc.   DOI
53 Samuel, E., Joshi, B., Kim, M.W., Kim, Y. Il, Swihart, M.T. and Yoon, S.S. (2019), "Hierarchical zeolitic imidazolate framework-derived manganese-doped zinc oxide decorated carbon nanofiber electrodes for high performance flexible supercapacitors", Chem. Eng. J., 371, 657-665. https://doi.org/10.1016/j.cej.2019.04.065.   DOI
54 Sanchez Zeferino, R., Barboza Flores, M. and Pal, U. (2011), "Photoluminescence and raman scattering in ag-doped zno nanoparticles", J. Appl. Phys., 109(1), 014308. https://doi.org/10.1063/1.3530631.   DOI
55 Schmidt, R., Gonjal, J.P. and Moran, E. (2015), "Microwaves: Microwave assisted hydrothermal synthesis of nanoparticles", Concise Encyclopedia Nanotechnol., 12, 561-572.
56 Ramimoghadam, D., Bin Hussein, M.Z. and Taufiq-Yap, Y.H. (2013), "Hydrothermal synthesis of zinc oxide nanoparticles using rice as soft biotemplate", Chem. Central J., 7(1), 1-10. https://doi.org/10.1186/1752-153X-7-136.   DOI
57 Fujisawa, H., Kobayashi, C., Nakashima, S. and Shimizu, M. (2013), "Two-step growth of ZnO nanorods by using MOCVD and control of their diameters and surface densities", J. Korean Phys. Soc., 62(8), 1164-1168. https://doi.org/10.3938/jkps.62.1164.   DOI
58 Gu, X., Li, C., Yuan, S., Ma, M., Qiang, Y. and Zhu, J. (2016), "ZnO based heterojunctions and their application in environmental photocatalysis", Nanotechnology, 27(40), 402001. https://doi.org/10.1088/0957-4484/27/40/402001.   DOI
59 Guo, X., Zhao, Q., Li, R., Pan, H., Guo, X., Yin, A. and Dai, W. (2010), "Synthesis of ZnO nanoflowers and their wettabilities and photocatalytic properties", Opt. Express, 18(17), 18401-18406. https://doi.org/10.1364/OE.18.018401.   DOI
60 Hazarika, A., Deka, B.K., Kim, D.Y., Kong, K., Park, Y. Bin and Park, H.W. (2015), "Growth of aligned ZnO nanorods on woven Kevlar® fiber and its performance in woven Kevlar® fiber/polyester composites", Compos. Part A Appl S, 78, 284-293. https://doi.org/10.1016/j.compositesa.2015.08.022.   DOI
61 Abdelfatah, M. and El-Shaer, A. (2018), "One step to fabricate vertical submicron ZnO rod arrays by hydrothermal method without seed layer for optoelectronic devices", Mater. Lett., 210, 366-369. https://doi.org/10.1016/j.matlet.2017.09.064.   DOI
62 Ahmad, M., Ahmad, M.K., Nafarizal, N., Soon, C.F., Suriani, A.B., Mohamed, A. and Mamat, M.H. (2020), "Chemisorbed CO2 molecules on ZnO nanowires (100 nm) surface leading towards enhanced piezoelectric voltage", Vacuum. 182, 109565. https://doi.org/10.1016/j.vacuum.2020.109565.   DOI
63 Ajala, F., Hamrouni, A., Houas, A., Lachheb, H., Megna, B., Palmisano, L. and Parrino, F. (2018), "The influence of Al doping on the photocatalytic activity of nanostructured ZnO: The role of adsorbed water", Appl. Surf. Sci., 445, 376-382. https://doi.org/10.1016/j.apsusc.2018.03.141.   DOI
64 Barreto, G., Morales, G., Canizo, A. and Eyler, N. (2015), "Microwave assisted synthesis of ZnO tridimensional nanostructures", Procedia Mater. Sci., 8, 535-540. https://doi.org/10.1016/j.mspro.2015.04.106.   DOI
65 Liang, Z., Cui, H., Wang, K., Yang, P., Zhang, L., Mai, W., Wang, C.-X. and Liu, P. (2012), "Morphology-controllable ZnOnanotubes and nanowires: synthesis, growth mechanism and hydrophobic property", Cryst. Eng. Comm, 14(5), 1723-1728. https://doi.org/10.1039/C2CE06045K.   DOI
66 Monshi, A., Foroughi, M.R. and Monshi, M.R. (2012), "Modified Scherrer equation to estimate more accurately nano-crystallite size using XRD", World J. Nano Sci. Eng., 2(3), 154-160. https://doi.org/10.4236/wjnse.2012.23020.   DOI
67 Duo, S., Li, Y., Liu, Z., Zhong, R., Liu, T. and Xu, H. (2017), "Preparation of ZnO from 2 D nanosheets to diverse 1 D nanorods and their structure, surface area, photocurrent, optical and photocatalytic properties by simple hydrothermal synthesis", J. Alloy Compd., 695, 2563-2579. https://doi.org/10.1016/j.jallcom.2016.11.162.   DOI
68 Zhu, Z., Yang, D. and Liu, H. (2011), "Microwave-assisted hydrothermal synthesis of ZnO rod-assembled microspheres and their photocatalytic performances", Adv. Powder Technol., 22(4), 493-497. https://doi.org/10.1016/j.apt.2010.07.002.   DOI
69 Znaidi, L. (2010), "Sol-gel-deposited ZnO thin films: A review", Mater. Sci. Eng. B, 174(1-3), 18-30. https://doi.org/10.1016/j.mseb.2010.07.001.   DOI
70 Samadi, M., Zirak, M., Naseri, A., Khorashadizade, E. and Moshfegh, A.Z. (2016), "Recent progress on doped ZnO nanostructures for visible-light photocatalysis", Thin Solid Films, 605, 2-19. https://doi.org/10.1016/j.tsf.2015.12.064.   DOI
71 Wang, X., Ahmad, M. and Sun, H. (2017), "Three-dimensional ZnO hierarchical nanostructures: Solution phase synthesis and applications", Materials, 10(11), 1-24. https://doi.org/10.3390/ma10111304.   DOI
72 Pirhashemi, M., Habibi-Yangjeh, A. and Rahim Pouran, S. (2018), "Review on the criteria anticipated for the fabrication of highly efficient ZnO-based visible-light-driven photocatalysts", J. Ind. Eng. Chem., 62, 1-25. https://doi.org/10.1016/j.jiec.2018.01.012.   DOI
73 Pung, S.Y., Lee, W.P. and Aziz, A. (2012), "Kinetic study of organic dye degradation using ZnO particles with different morphologies as a photocatalyst", Int. J. Inorg. Chem., 2012. https://doi.org/10.1155/2012/608183.   DOI
74 Liu, J., Wu, J., Zhou, C., Zhang, P., Guo, S., Li, S., Yang, Y., Li, K., Chen, L. and Wang, M. (2020), "Single-phase ZnCo2O4 derived ZnO-CoO mesoporous microspheres encapsulated by nitrogen-doped carbon shell as anode for high-performance lithium-ion batteries", J. Alloy Compds., 825, 153951. https://doi.org/10.1016/j.jallcom.2020.153951.   DOI
75 Liu, T., Li, Y., Zhang, H., Wang, M., Fei, X., Duo, S., Chen, Y., Pan, J. and Wang, W. (2015), "Tartaric acid assisted hydrothermal synthesis of different flower-like ZnO hierarchical architectures with tunable optical and oxygen vacancy-induced photocatalytic properties", Appl. Surf. Sci., 357, 516-529. https://doi.org/10.1016/j.apsusc.2015.09.031.   DOI
76 Lv, Y., Zhang, Z., Yan, J., Zhao, W. and Zhai, C. (2018), "Al doping influences on fabricating ZnO nanowire arrays: Enhanced field emission property", Ceram. Int., 44(7), 7454-7460. https://doi.org/10.1016/j.ceramint.2018.01.118.   DOI
77 Wei, Y., Wang, X., Yi, G., Zhou, L., Cao, J., Sun, G., Chen, Z., Bala, H. and Zhang, Z. (2017), "Hydrothermal synthesis of Ag modified ZnO nanorods and their enhanced ethanol-sensing properties", Mater. Sci. Semiconduct. Proc., 75, 327-333. https://doi.org/10.1016/j.mssp.2017.11.007.   DOI
78 Wu, Y., Hermkens, P.M., Van De Loo, B.W.H., Knoops, H.C.M., Potts, S.E., Verheijen, M.A., Roozeboom, F. and Kessels, W.M.M. (2013), "Electrical transport and Al doping efficiency in nanoscale ZnO films prepared by atomic layer deposition", J. Appl. Phys., 114(2), 024308. https://doi.org/10.1063/1.4813136.   DOI
79 Xu, S. and Wang, Z.L. (2011), "One-dimensional ZnO nanostructures: Solution growth and functional properties", Nano Res, 4(11), 1013-1098. https://doi.org/10.1007/s12274-011-0160-7.   DOI
80 Wang, Z.L. (2004), "Zinc oxide nanostructures: Growth, properties and applications", J. Phys. Condens. Mat., 16(25), https://doi.org/10.1088/0953-8984/16/25/R01.   DOI
81 Zhao, X., Li, M. and Lou, X. (2014), "Sol-gel assisted hydrothermal synthesis of ZnO microstructures: Morphology control and photocatalytic activity", Adv. Powder Technol., 25(1), 372-378. https://doi.org/10.1016/j.apt.2013.06.004.   DOI
82 Sayari, A. and El Mir, L. (2015), "Structural and optical characterization of Ni and Al co-doped ZnO nanopowders synthesized via the sol-gel process", KONA Powder Particle J., 32(32), 154-162. https://doi.org/10.14356/kona.2015003.   DOI
83 Sun, C., Shi, J. and Wang, X. (2010), "Fundamental study of mechanical energy harvesting using piezoelectric nanostructures", J. Appl. Phys., 108(3), 034309.https://doi.org/10.1063/1.3462468.   DOI
84 Byun, J.M., Choi, H.R., Kim, Y. Do, Sekino, T. and Kim, S.H. (2017), "Photocatalytic activity under UV/Visible light range of Nb-doped titanate nanostructures synthesized with Nb oxide", Appl. Surf. Sci., 415, 126-131. https://doi.org/10.1016/j.apsusc.2016.08.132.   DOI
85 Yilmaz, M., Bozkurt Cirak, B., Cirak, C. and Aydogan, S. (2016), "Hydrothermal growth of ZnO nanoparticles under different conditions", Phil. Mag. Lett., 96(2), 45-51. https://doi.org/10.1080/09500839.2016.1144938.   DOI
86 Ekrami, M., Magna, G., Emam-Djomeh, Z., Yarmand, M.S., Paolesse, R. and Di Natale, C. (2018), "Porphyrin-functionalized zinc oxide nanostructures for sensor applications", Sensors, 18(7), 2279. https://doi.org/10.3390/s18072279.   DOI
87 Manzano, C.V., Alegre, D., Caballero-Calero, O., Alen, B. and Martin-Gonzalez, M.S. (2011), "Synthesis and luminescence properties of electrodeposited ZnO films", J. Appl. Phys., 110(4), 043538. https://doi.org/10.1063/1.3622627.   DOI
88 Moussa, H., Girot, E., Mozet, K., Alem, H., Medjahdi, G. and Schneider, R. (2016), "ZnO rods/reduced graphene oxide composites prepared via a solvothermal reaction for efficient sunlight-driven photocatalysis", Appl. Catal. B Environ., 185, 11-21. https://doi.org/10.1016/j.apcatb.2015.12.007.   DOI
89 Ong, C.B., Ng, L.Y. and Mohammad, A.W. (2018), "A review of ZnO nanoparticles as solar photocatalysts: Synthesis, mechanisms and applications", Renew. Sust. Energ. Rev., 81, 536-551. https://doi.org/10.1016/j.rser.2017.08.020.   DOI
90 Yun, H., Zhou, X., Zhu, H. and Zhang, M. (2021), "One-dimensional zinc-manganate oxide hollow nanostructures with enhanced supercapacitor performance", J. Colloid Interf. Sci., 585, 138-147. https://doi.org/10.1016/j.jcis.2020.11.060.   DOI
91 Zheng, N., Huang, Y., Sun, W., Du, X., Liu, H.Y., Moody, S., Gao, J. and Mai, Y.W. (2016), "In-situ pull-off of ZnO nanowire from carbon fiber and improvement of interlaminar toughness of hierarchical ZnO nanowire/carbon fiber hydrid composite laminates", Carbon, 110, 69-78. https://doi.org/10.1016/j.carbon.2016.09.002.   DOI
92 Wang, Y., Feng, J., Wang, H., Zhang, M., Yang, X., Yuan, R. and Chai, Y. (2020), "Fabricating porous ZnO/Co3O4 microspheres coated with N-doped carbon by a simple method as high capacity anode", J. Electroanal. Chem., 873, 114479. https://doi.org/10.1016/j.jelechem.2020.114479.   DOI
93 Hasanpoor, M., Aliofkhazraei, M. and Delavari, H (2015), "Microwave assisted synthesis of Zinc oxide nanoparticles", Procedia Mater. Sci., 11, 320-325. https://doi.org/10.1016/j.mspro.2015.11.101.   DOI
94 Umar, A., Algarni, H., Kim, S. H. and Al-Assiri, M.S. (2016), "Time dependent growth of ZnO nanoflowers with enhanced field emission properties", Ceram. Int., 42(11), 13215-13222. https://doi.org/10.1016/j.ceramint.2016.05.114.   DOI
95 Venkatesha, T.G., Arthoba Nayaka, Y., Viswanatha, R., Vidyasagar, C.C. and Chethana, B.K. (2012), "Electrochemical synthesis and photocatalytic behavior of flower shaped ZnO microstructures", Powder Technol., 225, 232-238. https://doi.org/10.1016/j.powtec.2012.04.021.   DOI
96 Wang, F., Qin, X., Guo, Z., Meng, Y., Yang, L. and Ming, Y. (2013), "Hydrothermal synthesis of dumbbell-shaped ZnO microstructures", Ceram. Int., 39(8), 8969-8973. https://doi.org/10.1016/j.ceramint.2013.04.096.   DOI
97 Wang, R. Z., Zhao, W. and Yan, H. (2017), "Generalized mechanism of field emission from nanostructured semiconductor film cathodes", Scientific Reports, 7(1), 1-8. https://doi.org/10.1038/srep43625.   DOI
98 Weldegebrieal, G.K. (2020), "Synthesis method, antibacterial and photocatalytic activity of ZnO nanoparticles for azo dyes in wastewater treatment: A review", Inorg. Chem. Commun., 108140. https://doi.org/10.1016/j.inoche.2020.108140.   DOI
99 Goktas, S. and Goktas, A. (2021), "A comparative study on recent progress in efficient ZnO based nanocomposite and heterojunction photocatalysts: A review", J. Alloy Compd., 158734. https://doi.org/10.1016/j.jallcom.2021.158734.   DOI
100 Foo, K.L., Hashim, U., Muhammad, K. and Voon, C.H. (2014), "Sol-gel synthesized zinc oxide nanorods and their structural and optical investigation for optoelectronic application", Nanosc. Res. Lett., 9(1), 1-10. https://doi.org/10.1186/1556-276X-9-429.   DOI
101 Guo, H., Zhang, W., Sun, Y., Zhou, T., Qiu, Y., Xu, K., Zhang, B. and Yang, H. (2015), "Double disks shaped ZnO microstructures synthesized by one-step CTAB assisted hydrothermal methods", Ceram. Int., 41. https://doi.org/10.1016/j.ceramint.2015.04.122.   DOI
102 Shirvanimoghaddam, K., Hamim, S.U., Karbalaei Akbari, M., Fakhrhoseini, S.M., Khayyam, H., Pakseresht, A.H., Ghasali, E., Zabet, M., Munir, K.S., Jia, S., Davim, J.P. and Naebe, M. (2017), "Carbon fiber reinforced metal matrix composites: Fabrication processes and properties", Compos. Part A Appl. S., 92, 70-96. https://doi.org/10.1016/j.compositesa.2016.10.032.   DOI
103 Witkowski, B.S., Dluzewski, P., Kaszewski, J., Wachnicki, L., Gieraltowska, S., Kurowska, B. and Godlewski, M. (2018), "Ultra-fast epitaxial growth of ZnO nano/microrods on a GaN substrate, using the microwave-assisted hydrothermal method", Mater. Chem. Phys., 205, 16-22. https://doi.org/10.1016/j.matchemphys.2017.11.005.   DOI
104 Wang, S., Kuang, P., Cheng, B., Yu, J. and Jiang, C. (2018), "ZnO hierarchical microsphere for enhanced photocatalytic activity", J. Alloy Compd., 741, 622-632.https://doi.org/10.1016/j.jallcom.2018.01.141.   DOI
105 Jung, H.J., Lee, S., Yu, Y., Hong, S.M., Choi, H.C. and Choi, M.Y. (2012), "Low-temperature hydrothermal growth of ZnO nanorods on sol-gel prepared ZnO seed layers: Optimal growth conditions", Thin Solid Films, 524, 144-150. https://doi.org/10.1016/j.tsf.2012.10.007.   DOI
106 Poornaprakash, B., Chalapathi, U., Babu, S. and Park, S.H. (2017), "Structural, morphological, optical and magnetic properties of Gd-doped and (Gd, Mn) co-doped ZnO nanoparticles", Physica E, 93, 111-115. https://doi.org/10.1016/j.physe.2017.06.007.   DOI
107 Panda, D. and Tseng, T.Y. (2013), "One-dimensional ZnO nanostructures: Fabrication, optoelectronic properties and device applications", J. Mater. Sci., 48(20), 6849-6877. https://doi.org/10.1007/s10853-013-7541-0.   DOI
108 Rangel-Mendez, J.R., Matos, J., Chazaro-Ruiz, L.F., Gonzalez-Castillo, A.C. and Barrios-Yanez, G. (2018), "Microwaveassisted synthesis of C-doped TiO2and ZnO hybrid nanostructured materials as quantum-dots sensitized solar cells", Appl. Surf. Sci., 434, 744-755. https://doi.org/10.1016/j.apsusc.2017.10.236.   DOI
109 Salahuddin, N.A., El-kemary, M. and Ibrahim, E.M. (2015), "Synthesis and characterization of ZnO nanotubes by hydrothermal method", Int. J. Sci. Res. Publ., 5(9), 3-6.
110 Rai, R.S. and Bajpai, V. (2019), "Fabrication of ZnO nanostructures on woven carbon fiber via hydrothermal route and effect of synthesis conditions on morphology", International Conference on Precision, Meso, Micro and Nano Engineering, 1-4.
111 Sin, J.C. and Lam, S.M. (2016), "Hydrothermal synthesis of europium-doped flower-like ZnO hierarchical structures with enhanced sunlight photocatalytic degradation of phenol", Mater. Lett., 182, 223-226. https://doi.org/10.1016/j.matlet.2016.06.126.   DOI
112 Hsu, C.L. and Chang, S.J. (2014), "Doped ZnO 1D nanostructures: Synthesis, properties and photodetector application", Small, 10(22), 4562-4585. https://doi.org/10.1002/smll.201401580.   DOI
113 Henry, M., Jolivet, J.P. and Livage, J. (1992), "Aqueous chemistry of metal cations: Hydrolysis, condensation and complexation", Chem. Spectroscopy Application Sol Gel Glass, 153-206. https://doi.org/10.1007/BFb0036968.
114 Hilgendorff, M. (1998), "From ZnO colloids to nanocrystalline highly conductive films", J. Electrochem. Soc., 145(10), 3632. https://doi.org/10.1149/1.1838855.   DOI
115 Hou, Y., Soleimanpour, A.M. and Jayatissa, A.H. (2013), "Low resistive aluminum doped nanocrystalline zinc oxide for reducing gas sensor application via sol-gel process", Sensor Actuat. B Chem., 177, 761-769. https://doi.org/10.1016/j.snb.2012.11.085.   DOI
116 Hasnidawani, J.N., Azlina, H.N., Norita, H., Bonnia, N.N., Ratim, S. and Ali, E.S. (2016), "Synthesis of ZnO nanostructures using sol-gel method", Procedia Chem., 19, 211-216. https://doi.org/10.1016/j.proche.2016.03.095.   DOI
117 Sun, L., Shao, R., Chen, Z., Tang, L., Dai, Y. and Ding, J. (2012), "Alkali-dependent synthesis of flower-like ZnO structures with enhanced photocatalytic activity via a facile hydrothermal method", Appl. Surf. Sci., 258(14), 5455-5461. https://doi.org/10.1016/j.apsusc.2012.02.034.   DOI
118 Lukovic Golic, D., Brankovic, G., Pocuca Nesic, M., Vojisavljevic, K., Recnik, A., Daneu, N., Bernik, S., Scepanovic, M., Poleti, D. and Brankovic, Z. (2011), "Structural characterization of self-assembled ZnO nanoparticles obtained by the sol-gel method from Zn(CH3COO)22H2O", Nanotechnology., 22(39), 395603. https://doi.org/10.1088/0957-4484/22/39/395603.   DOI
119 Mittal, M., Sharma, M. and Pandey, O.P. (2014), "UV-Visible light induced photocatalytic studies of Cu doped ZnO nanoparticles prepared by co-precipitation method", Solar Energy, 110, 386-397. https://doi.org/10.1016/j.solener.2014.09.026.   DOI
120 Ko, S.H., Lee, D., Kang, H.W., Nam, K.H., Yeo, J.Y., Hong, S.J., Grigoropoulos, C.P. and Sung, H.J. (2011), "Nanoforest of hydrothermally grown hierarchical ZnO nanowires for a high efficiency dye-sensitized solar cell", Nano Lett., 11(2), 666-671. https://doi.org/10.1021/nl1037962.   DOI
121 Kong, K., Deka, B.K., Kwak, S.K., Oh, A., Kim, H., Park, Y.B and Park, H.W. (2013), "Processing and mechanical characterization of ZnO/polyester woven carbon-fiber composites with different ZnO concentrations", Compos. Part A Appl. S, 55, 152-160. https://doi.org/10.1016/j.compositesa.2013.08.013.   DOI
122 Hwang, S.H., Moon, K.J., Lee, T.Il, Lee, W. and Myoung, J.M. (2014), "Controlling phosphorus doping concentration in ZnO nanorods by low temperature hydrothermal method", Mater. Chem. Phys., 143(2), 600-604. https://doi.org/10.1016/j.matchemphys.2013.09.038.   DOI
123 Jiang, S., Lin, K. and Cai, M. (2020), "ZnO Nanomaterials: Current advancements in antibacterial mechanisms and applications", Front. Chem., 8, 580. https://doi.org/10.3389/fchem.2020.00580.   DOI
124 Zak, A.K., Majid, W.A., Abrishami, M.E. and Yousefi, R. (2011), "X-ray analysis of ZnO nanoparticles by Williamson-Hall and size-strain plot methods", Solid State Sci., 13(1), 251-256. https://doi.org/10.1016/j.solidstatesciences.2010.11.024.   DOI
125 Kong, K., Seo, J., Deka, B.K. and Park, H.W. (2015), "Experimental study for the improvement of the impact property of carbon fiber composites", Trans. Korean Soc. Mech. Eng., 1641-1642.
126 Kozuka, Y., Tsukazaki, A. and Kawasaki, M. (2014), "Challenges and opportunities of ZnO-related single crystalline heterostructures". Appl. Phys. Rev., 1(1), 011303. https://doi.org/10.1063/1.4853535.   DOI
127 Chen, H., Ma, S.Y., Jiao, H.Y., Yang, G.J., Xu, X.L., Wang, T.T., Jiang, X.H. and Zhang, Z.Y. (2016), "The effect microstructure on the gas properties of Ag doped zinc oxide sensors: Spheres and sea-urchin-like nanostructures", J. Alloy Compd., 687, 342-351. https://doi.org/10.1016/j.jallcom.2016.06.153.   DOI
128 Kumar, D., Rai, R.S. and Singh, N.K. (2020), "An innovative approach to deposit ultrathin ZnO nanoflakes (2D) through hydrothermal assisted electrochemical discharge deposition and growth method", Ceram. Int., 46(16), 26216-26220. https://doi.org/10.1016/j.ceramint.2020.07.009.   DOI
129 Kumar, S.G. and Rao, K.S.R.K. (2015), "Zinc oxide based photocatalysis: Tailoring surface-bulk structure and related interfacial charge carrier dynamics for better environmental applications", RSC Adv., 5(5), 3306-3351. https://doi.org/10.1039/c4ra13299h.   DOI
130 Kumar, S., Sahare, P.D. and Kumar, S. (2018), "Optimization of the CVD parameters for ZnO nanorods growth: Its photoluminescence and field emission properties", Mater. Res. Bull. 105, 237-245. https://doi.org/10.1016/j.materresbull.2018.05.002.   DOI
131 Hahn, Y.B. (2011), "Zinc oxide nanostructures and their applications", Korean J. Chem. Eng., 28(9), 1797-1813. https://doi.org/10.1007/s11814-011-0213-3.   DOI
132 Krol, A., Pomastowski, P., Rafinska, K., Railean-Plugaru, V. and Buszewski, B. (2017), "Zinc oxide nanoparticles: Synthesis, antiseptic activity and toxicity mechanism", Adv. Colloid Interfac., 249, 37-52. https://doi.org/10.1016/j.cis.2017.07.033.   DOI
133 Hong, S.H., Kim, M.H., Yun, H.W., Paik, T. and Lee, H. (2017), "Solution-processed fabrication of superhydrophobic hierarchical zinc oxide nanostructures via nanotransfer printing and hydrothermal growth", Surf. Coat. Tech., 331, 189-195. https://doi.org/10.1016/j.surfcoat.2017.10.022.   DOI
134 Yuan, G., Xiang, J., Jin, H., Wu, L., Jin, Y. and Zhao, Y. (2018), "Anchoring ZnO nanoparticles in nitrogen-doped graphene sheets as a high-performance anode material for lithium-ion batteries", Materials, 11(1), 96. https://doi.org/10.3390/ma11010096.   DOI
135 Bernardo, M.S., Villanueva, P.G., Jardiel, T., Calatayud, D.G., Peiteado, M. and Caballero, A.C. (2017), "Ga-doped ZnO self-assembled nanostructures obtained by microwave-assisted hydrothermal synthesis: Effect on morphology and optical properties", J. Alloy Compd., 722, 920-927. https://doi.org/10.1016/j.jallcom.2017.06.160.   DOI
136 Liang, S., Zhu, L., Gai, G., Yao, Y., Huang, J., Ji, X., Zhou, X., Zhang, D. and Zhang, P. (2014), "Synthesis of morphology-controlled ZnO microstructures via a microwave-assisted hydrothermal method and their gas-sensing property", Ultrason. Sonochem., 21(4), 1335-1342. https://doi.org/10.1016/j.ultsonch.2014.02.007.   DOI
137 Laurenti, M., Garino, N., Porro, S., Fontana, M. and Gerbaldi, C. (2015), "Zinc oxide nanostructures by chemical vapour deposition as anodes for Li-ion batteries", J. Alloy. Compd., 640, 321-326. https://doi.org/10.1016/j.jallcom.2015.03.222.   DOI
138 Lavand, A.B. and Malghe, Y.S. (2015), "Synthesis, characterization and visible light photocatalytic activity of nitrogen-doped zinc oxide nanospheres", J. Asian Ceram. Soc., 3(3), 305-310. https://doi.org/10.1016/j.jascer.2015.06.002.   DOI
139 Li, K., Zhou, X., Zhao, Z., Chen, C., Wang, C., Ren, B. and Zhang, L. (2018), "Synthesis of zirconium carbide whiskers by a combination of microwave hydrothermal and carbothermal reduction", J. Solid State Chem., 258, 383-390. https://doi.org/10.1016/j.jssc.2017.11.002.   DOI
140 Theerthagiri, J., Salla, S., Senthil, R.A., Nithyadharseni, P., Madankumar, A., Arunachalam, P., Maiyalagan, T. and Kim, H.S. (2019), "A review on ZnO nanostructured materials: Energy, environmental and biological applications", Nanotechnology, 30(39), 392001. https://doi.org/10.1088/1361-6528/ab268a.   DOI
141 Xiao, L., Li, E., Yi, J., Meng, W., Wang, S., Deng, B. and Liu, J. (2018), "Enhancing the performance of nanostructured ZnO as an anode material for lithium-ion batteries by polydopamine-derived carbon coating and confined crystallization", J. Alloy Compd., 764, 545-554. https://doi.org/10.1016/j.jallcom.2018.06.081.   DOI
142 Xu, C.L. and Wang, Y.Z. (2018), "Self-assembly of stearic acid into nano flowers induces the tunable surface wettability of polyimide film", Mater. Des., 138, 30-38. https://doi.org/10.1016/j.matdes.2017.10.057.   DOI