DOI QR코드

DOI QR Code

Fast simulation of large-scale non-stationary wind velocities based on adaptive interpolation reconstruction scheme

  • Han, Hui (Department of Civil Engineering, School of Mechanics and Engineering Science, Shanghai University) ;
  • Li, Chunxiang (Department of Civil Engineering, School of Mechanics and Engineering Science, Shanghai University) ;
  • Li, Jinhua (Department of Civil Engineering, East China Jiaotong University)
  • Received : 2019.11.28
  • Accepted : 2021.06.15
  • Published : 2021.07.25

Abstract

Spectral representation method (SRM) is the most classical one for the simulation of wind velocity. It is inefficiency when applied to large-scale non-stationary wind velocities with large simulation points. There are two reasons: numerous Cholesky decomposition and summation of Trigonometric terms. In order to improve the efficiency while ensuring accuracy, two aspects of work have been in this paper. (1) An adaptive interpolation-enhanced scheme is devised, which uses "average resolution" as the quantization index. This scheme can automatically realize the non-uniform distribution of interpolation points in two dimensions of time and frequency simultaneously, and improve the accuracy of interpolation. (2) The non-stationary wind velocities were reconstructed in time, frequency and space domain. Firstly, interpolation in time and frequency domain is directly applied to the H matrix, then proper orthogonal decomposition (POD) technology is introduced to decouple the wind velocities at spatial interpolation points, so as to obtain the time-dependent principal coordinates and space-dependent intrinsic mode function (IMF). Finally, IMF is reconstructed in the space domain to obtain the complete wind velocities. The above methodology is carried out to a super high-rise building containing 100 wind velocities simulation points and, results show that the proposed approach saves about 88% of the computational time compared with the classical SRM; saves about 47% of the computational time compared with the time-frequency interpolation based method. This paper achieves the rapid construction of large-scale non-stationary wind velocities.

Keywords

Acknowledgement

This study is supported by the National Natural Science Foundation of China (Grant No. 51778354).

References

  1. Aly, A.M. and Hamzeh, G.Z. (2020), "Peak pressures on low rise buildings: CFD with LES versus full scale and wind tunnel measurements", Wind Struct., 30(1), 99-117. http://dx.doi.org/10.12989/was.2020.30.1.099.
  2. Bai, Z.Z., Miao, C.Q. and Jian, S. (2019), "On multistep Rayleigh quotient iterations for Hermitian eigenvalue problems", Comput. Math. Appl., 77(9), 2396-2406. https://doi.org/10.1016/j.camwa.2018.12.025.
  3. Bao, X.M. and Li, C.X. (2019), "Fast simulation of non-stationary wind velocity based on time-frequency interpolation", Wind Eng. Ind. Aerod, 193, 103982. https://doi.org/10.1016/j.jweia.2019.103982.
  4. Chan, K.T., Stephen, N.G. and Young, K. (2011), "Perturbation theory and the Rayleigh quotient", J. Sound Vib., 330(9), 2073-2078. https://doi.org/10.1016/j.jsv.2010.11.001.
  5. Davenport, A.G. (1960), "The spectrum of horizontal gustiness near the ground in high winds", Meteor. Soc., 87(372), 194-211. https://doi.org/10.1002/qj.49708737208.
  6. Deng, T., Fu, J.Y., Zheng, Q.X. and Wu, J.R. (2019), "Performance-based wind-resistant optimization design for tall building structures", Struct. Eng., 145(10), 04019103. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002383.
  7. Deodatis, G. (1996), "Simulation of ergodic multivariate stochastic processes", Eng. Mech., 122(8), 778-787. https://doi.org/10.1061/(ASCE)0733-9399(1996)122:8(778).
  8. Deodatis, G. and Shinozuka, M. (1988), "Autoregressive model for nonstationary stochastic processes", Eng. Mech., 114(11), 1995-2012. https://doi.org/10.1061/(ASCE)0733-9399(1988)114:11(1995).
  9. Di Paola, M. (1998), "Digital simulation of wind field velocity", Wind Eng. Ind. Aerod., 74-76(2), 91-109. https://doi.org/10.1016/S0167-6105(98)00008-7.
  10. Di Paola, M., Muscolino, G. and Sofi, A. (2004), "Monte Carlo simulation for the response analysis of long-span suspended cables under wind loads", Wind Struct., 7(2), 107-130. http://dx.doi.org/10.12989/was.2004.7.2.107.
  11. Ding, Q.S., Zhu, L.D. and Xiang, H.F. (2006), "Simulation of stationary Gaussian stochastic wind velocity field", Wind Struct., 3(9), 231-243. http://dx.doi.org/10.12989/was.2006.9.3.231.
  12. Feng, R.Q., Liu, F.C., Cai, Q., Yan, G.R. and Leng, J.B. (2018), "Field measurements of wind pressure on an open roof during Typhoons HaiKui and SuLi", Wind Struct., 26(1), 11-14. http://dx.doi.org/10.12989/was.2018.26.1.011.
  13. Fiore, A. and Monaco, P. (2009), "POD-based representation of the alongwind Equivalent Static Force for long-span bridges", Wind Struct., 12(3), 239-257. http://dx.doi.org/10.12989/was.2009.12.3.239.
  14. Franke, R. (1982), "Scattered data interpolation: test of some methods", Comput. Math., 33(157), 181-200. https://doi.org/10.1090/S0025-5718-1982-0637296-4.
  15. Grigoriu, M. (1993), "On the spectral representation method in simulation", Probabilistic Eng. Mech., 8(2), 75-90. https://doi.org/10.1016/0266-8920(93)90002-d.
  16. Gurley, K. and Kareem, A. (1997), "Analysis interpretation modeling and simulation of unsteady wind and pressure data", Wind Eng. Ind. Aerod., 69-71(Jul-Oc), 657-669. https://doi.org/10.1016/S0167-6105(97)00195-5.
  17. Gurley, K., Kareem, A. and Tognarelli, M.A. (1996), "Simulation of a class of non-normal random processes", Non Linear Mech., 31(5), 601-617. https://doi.org/10.1016/0020-7462(96)00025-X.
  18. Huang, G.Q. (2015), "Application of proper orthogonal decomposition in fast fourier transform-assisted multivariate nonstationary process simulation", Eng. Mech., 141(7), 04015015. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000923.
  19. Huang, G.Q., Liao, H.L. and Li, M.S. (2013), "New formulation of Cholesky decomposition and applicationsin stochastic simulation", Probabilist. Eng. Mech., 34, 40-47. https://doi.org/10.1016/j.probengmech.2013.04.003.
  20. Huang, G.Q., Peng, L.L., Kareem, A. and Song, C.C. (2020), "Data-driven simulation of multivariate nonstationary winds: A hybrid multivariate empirical mode decomposition and spectral representation method", Wind Eng. Ind. Aerod., 197, 104073. https://doi.org/10.1016/j.jweia.2019.104073.
  21. Huang, Z.F. and Gu, M. (2019), "Characterizing nonstationary wind speed using the AR-MA-GARCH model", Struct. Eng., 145(1), 04018226. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002211.
  22. Hui, Y., Li, B., Kawai, H. and Yang, Q.S. (2017), "Non-stationary and non-Gaussian characteristics of wind speeds", Wind Struct., 24(1), 59-78. http://dx.doi.org/10.12989/was.2017.24.1.059.
  23. Jiang, Y., Zhao, N., Peng, L.L., Zhao, L.N. and Liu, M. (2019), "Simulation of stationary wind field based on adaptive interpolation-enhanced scheme", Wind Eng. Ind. Aerod., 195, 104001. https://doi.org/10.1016/j.jweia.2019.104001.
  24. Kaimal, J.C., Wyngaard, J.C., Izumi, Y. and Cote, O.R. (1972), "Spectral characteristics of surface-layer turbulence", Meteor. Soc., 98(417), 563-589. https://doi.org/10.1002/qj.49709841707.
  25. Li, C.X. and Du, M. (2008), "Simulation of fluctuating wind velocity time series around super-tall buildings", Vib. Shock, 27(3), 124-130. https://doi.org/10.13465/j.cnki.jvs.2008.03.030.
  26. Li, F.H., Ni, Z.H., Shen, S.Z. and Gu, M. (2009), "POD Theory of POD and its application in wind engineering of structures", Vib. Shock, 28(4), 29-32+201. https://doi.org/10.3969/j.issn.1000-3835.2009.04.007.
  27. Li, J.H., Li, C.X., He, L. and Shen, J.H. (2015), "Extended modulating functions for simulation of wind velocities with weak and strong nonstationarity", Renew. Energy, 83, 384-397. https://doi.org/10.1016/j.renene.2015.04.044.
  28. Li, Y.S. and Kareem, A. (1995), "Stochastic decomposition and application to probabilistic dynamics", Eng. Mech., 121(1), 162-174. https://doi.org/10.1061/(ASCE)0733-9399(1995)121:1(162).
  29. Li, Z.H. and Wang, H.H. (2010), "Comparison of gravimetric data meshing methods", Geod. Geodyn., 30(1), 140-144. https://doi.org/10.14075/j.jgg.2010.01.019.
  30. Liang, J.W., Chaudhuri, S.R. and Shinozuka, M. (2007), "Simulation of nonstationary stochastic processes by spectral representation", Eng. Mech., 133(6), 616-627. https://doi.org/10.1061/(ASCE)0733-9399(2007)133:6(616).
  31. Mignolet, M.P. and Spanos, P.D. (1990), "MA to ARMA modeling of wind", Wind Eng. Ind. Aerod., 36(1-3), 429-438. https://doi.org/10.1016/0167-6105(90)90326-8.
  32. Priestley, M.B. (1965), "Evolutionary spectra and non-stationary processes", Roy. Stat. Soc., 27(2), 204-237. https://doi.org/10.1111/j.2517-6161.1965.tb01488.x.
  33. Priestley, M.B. (1967), "Power spectral analysis of non-stationary random processes", Sound Vib., 6(1), 86-97. https://doi.org/10.1016/0022-460X(67)90160-5.
  34. Rice, S.O. (1944), "Mathematical analysis of random noise", Bell Syst. Tech., 23(3), 282-332. https://doi.org/10.1002/j.1538-7305.1944.tb00874.x.
  35. Shinozuka, M. and Deodatis, G. (1991), "Simulation of stochastic processes by spectral representation", Appl. Mech. Rev., 44(4), 191-204. https://doi.org/10.1115/1.3119501.
  36. Shinozuka, M. and Jan, C.M. (1972), "Digital simulation of random processes and its applications", Sound Vib., 25(1), 111-128. https://doi.org/10.1016/0022-460x(72)90600-1.
  37. Song, Y.P., Chen, J.B., Peng, Y.B., Spanos, P.D. and Li, J. (2018), "Simulation of nonhomogeneous fluctuating wind speed field in two-spatial dimensions via an evolutionary wavenumberfrequency joint power spectrum", Wind Eng. Ind. Aerod., 179, 250-259. https://doi.org/10.1016/j.jweia.2018.06.005.
  38. Spanos, P.D. and Mignolet, M.P. (1989) "ARMA Monte Carlo simulation in probabilistic structural analysis", Shock Vib., 21(11), 3-14. https://doi.org/10.1177/058310248902101103.
  39. Tao, T.Y., Wang, H. and Zhao, K.Y. (2021), "Efficient simulation of fully non-stationary random wind field based on reduced 2D hermite interpolation", Mech. Syst. Signal Pr., 150, 107265. https://doi.org/10.1016/j.ymssp.2020.107265
  40. Tao, T.Y., Wang, H., Hu, L. and Kareem, A. (2020), "Error Analysis of Multivariate Wind Field Simulated by Interpolationenhanced spectral representation method", Eng. Mech., 146(6), 04020049. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001783.
  41. Tao, T.Y., Wang, H., Yao, C.Y., He, X.H. and Kareem, A. (2018), "Efficacy of interpolation enhanced schemes in random wind field simulation over long-span bridges", Bridge Eng., 23(3), 04017147. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001203.
  42. Von Karman, T. (1948), "Progress in the statistical theory of turbulence", Proc. Natl. Acad. Sci. U.S.A., 34(11), 530-539. https://doi.org/10.2307/88224.
  43. Wang, H., Xu, Z.D., Wu, T. and Mao, J.X. (2018), "Evolutionary power spectral density of recorded typhoons at Sutong Bridge using harmonic wavelets", Wind Eng. Ind. Aerod., 177, 197-212. http://doi.org/10.1016/j.jweia.2018.04.015.
  44. Wang, H.F. and Wu, T. (2020), "Time-varying multiscale spatial correlation: Simulation and application to wind loading of structures", Struct. Eng-ASCE, 146(7), 04020138. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002689.
  45. Xie, Z.N., Ni, Z.H. and Shi, B.Q. (2001), "Experimental Investigation on Characteristics of Wind Load on Large Span Roof", Build. Struct., 22(2), 23-28. https://doi.org/10.3321/j.issn:1000-6869.2001.02.004.
  46. Yamazaki, F. and Shinozuka, M. (1988), "Digital generation of non-Gaussian stochastic fields", Eng. Mech., 114(7), 1183-1197. https://doi.org/10.1061/(ASCE)0733-9399(1988)114:7(1183).
  47. Yang, J.N. (1972), "Simulation of random envelope process", Sound Vib., 21(1), 73-85. https://doi.org/10.1016/0022-460X(72)90207-6.
  48. Yang, J.N. (1973), "On the normality and accuracy of simulated random processes", Sound Vib., 26(3), 417-428. https://doi.org/10.1016/s0022-460x(73)80196-8.
  49. Yu, C.J., Li, Y.L., Zhang, M.J., Zhang, Y. and Zhai, G.H. (2019), "Wind characteristics along a bridge catwalk in a deep-cutting gorge from field measurements", Wind Eng. Ind. Aerod., 186, 94-104. https://doi.org/10.1016/j.jweia.2018.12.022.
  50. Yuan, Q.L. and Tamura, Y. (2005), "Equivalent static wind load estimation in wind-resistant design of single-layer reticulated shells", Wind Struct., 8(6), 443-454. http://dx.doi.org/10.12989/was.2005.8.6.443.
  51. Zhang, M.J., Zhang, J.X., Li, Y.L., Yu, J.S., Zhang, J.Y. and Wu, L.H. (2020), "Wind characteristics in the high-altitude difference at bridge site by wind tunnel tests", Wind Struct., 30(6), 547-558. http://dx.doi.org/10.12989/was.2020.30.6.547.
  52. Zhao, N. and Huang, G.Q. (2020), "Wind velocity field simulation based on enhanced closed-form solution of Cholesky dcomposition", Eng. Mech., 146(2), 04019128. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001712.