DOI QR코드

DOI QR Code

The Effect of AI and Big Data on an Entry Firm: Game Theoretic Approach

인공지능과 빅데이터가 시장진입 기업에 미치는 영향관계 분석, 게임이론 적용을 중심으로

  • Jeong, Jikhan (School of Economic Sciences, Washington State University)
  • 정직한 (워싱턴 주립대학교 경제학과)
  • Received : 2021.03.12
  • Accepted : 2021.07.20
  • Published : 2021.07.28

Abstract

Despite the innovation of AI and Big Data, theoretical research bout the effect of AI and Big Data on market competition is still in early stages; therefore, this paper analyzes the effect of AI, Big Data, and data sharing on an entry firm by using game theory. In detail, the firms' business environments are divided into internal and external ones. Then, AI algorithms are divided into algorithms for (1) customer marketing, (2) cost reduction without automation, and (3) cost reduction with automation. Big Data is also divided into external and internal data. this study shows that the sharing of external data does not affect the incumbent firm's algorithms for consumer marketing while lessening the entry firm's entry barrier. Improving the incumbent firm's algorithms for cost reduction (with and without automation) and external data can be an entry barrier for the entry firm. These findings can be helpful (1) to analyze the effect of AI, Big Data, and data sharing on market structure, market competition, and firm behaviors and (2) to design policy for AI and Big Data.

인공지능과 빅데이터의 기술혁신에도 인공지능과 빅데이터가 시장경쟁 영향에 대한 이론연구들은 아직 초기이다. 따라서 본 논문은 인공지능, 빅데이터, 데이터 공유가 신규 진입기업에 미치는 영향을 게임이론을 활용하여 분석하였다. 먼저 기업의 경영환경을 내부와 외부로 구분하였다. 이후 인공지능 알고리즘을 (1) 고객마케팅, (2) 비용 절감, (3) 비용 절감을 위한 자동화 알고리즘으로 구분하였다. 또한 빅데이터를 외부 및 내부 데이터로 구분하였다. 분석 결과 외부 데이터의 공유는 기존 기업의 고객마케팅 알고리즘에는 영향이 없고 신규 기업의 진입장벽을 완화했다. 하지만 기존 기업의 비용 절감 알고리즘들과 내부 빅데이터의 개선은 신규기업의 시장진입 장벽이 될 수 있다. 이러한 시사점들은 (1) 인공지능, 빅데이터, 데이터 공유에 따른 시장구조, 경쟁, 기업행태 영향분석과 (2) 인공지능과 빅데이터 정책수립 시 이바지할 수 있다.

Keywords

References

  1. D. Zhang, S et al. (2021). The AI Index 2021 Annual Report. Stanford : Stanford University.
  2. McKinsey & Company. (2020). Global Survey: The State of AI in 2020. New York : McKinsey
  3. M. S. Chung, S. H. Jeong & J. Y. Lee. (2018). Analysis of Major Research Trends in Artificial Intelligence Based on Domestic/international Patent Data. Journal of Digital Convergence, 16(6), 187-195. DOI : 10.14400/JDC.2018.16.6.187
  4. M. S. Chung, H. H. Jeong, U. Chae, G. H. Lee & J. Y. Lee. (2017). A Study On Technical Trend Analysis Related to Semantic Analysis of NLP Through Domestic/Foreign Patent Data. Journal of Digital Convergence, 18(1), 137-146. DOI : 10.14400/JDC.2020.18.1.137
  5. M. S. Chung, S. H. Park, B. H. Chae & J. Y. Lee. (2017). Analysis of Major Research Trends in Artificial Intelligence through Analysis of Thesis Data. Journal of Digital Convergence, 15(5), 225-233. DOI : 10.14400/JDC.2017.15.5.225
  6. H. Varian. (2018). Artificial Intelligence, Economics, and Industrial Organization. National Bureau of Economic Research Working Papers 24839.
  7. P. Bajari, D. Nekipelov, S. P. Ryan & M. Yang. (2015). Demand Estimation with Machine Learning and Model Combination. American Economic Review, 105 (5), 481-85. https://doi.org/10.1257/aer.p20151021
  8. J. Kleinberg, J. Ludwig, S. Mullainathan & Z. Obermeyer. (2015). Prediction Policy Problems. Amer ican Economic Review 105 (5), 491-95. https://doi.org/10.1257/aer.p20151023
  9. M. Farboodi, R. Mihet, T. Philippon & L. Veldkamp. (2019). Big Data and Firm Dynamics. National Bur eau of Economic Research Working Papers 25515.
  10. M. I. Jordan & T. M. Mitchell. (2015). Machine Learning: Trends, Perspectives, and Prospects. Science 349(6245) 255-260. https://doi.org/10.1126/science.aaa8415
  11. I. M. Cockburn, R. Henderson & S. Stern. (2018). The Impact of Artificial Intelligence on Innovation. National Bureau of Economic Research Working Papers 24449.
  12. S. K. Chung. (2012). A Study on the Possibility of Self-Correction in the Market for Protecting Internet Privacy. Journal of Digital Convergence, 10(9), 27-37. UCI : G704-002010.2012.10.9.015 https://doi.org/10.14400/JDPM.2012.10.9.027
  13. D. R. Shin. (2010). The Effect of the Application of an Agreement based on Game Theory about Corporal Punishment to Students' School Life Satisfaction. Journal of Digital Convergence, 8(3), 1-17. UCI : G704-002010.2010.8.3.001
  14. S. H. Hong (2020). A Research on stock price prediction based on Deep Learning and Economic Indicators. Journal of Digital Convergence, 18(11), 267-272. DOI : 10.14400/JDC.2020.18.11.267
  15. B. K. Choi, S. W. Ham, C. H. Kim, J. S. Seo, M. H. Park & S. H. Kang (2020). Development of Predictive Model for Length of Stay(LOS) in Acute Stroke Patients Using Artificial Intelligence. Journal of Digital Convergence, 16(1), 231-242. DOI : 10.14400/JDC.2018.16.1.231
  16. S. J. Choi. (2020). Beta-wave Correlation Analysis Model based on Unsupervised Machine Learning. Journal of Digital Convergence, 17(3), 221-226. DOI : 10.14400/JDC.2019.17.3.221
  17. G. Urban, A. Timoshenko, P. Dhillon & J. R. Hauser. (2020), Is Deep Learning a Game Changer for Marketing Analytics?, MIT Sloan Management Review, 61(2), 70-6.
  18. I. C. Reimers & J. Waldfogel. (2020). Digitization and Pre-Purchase Information: The Causal and Welfare Impacts of Reviews and Crowd Ratings. National Bureau of Economic Research Working Papers 26776.
  19. X. Liu, D. Lee & K. Srinivasan. (2019), Large-Scale Cross-Category Analysis of Consumer Review Content on Sales Conversion Leveraging Deep Learning, Journal of Marketing Research, 46(6), 918-43.
  20. A. Timoshenko & J. R. Hauser (2019), Identifying Customer Needs from User-Generated Content, Marketing Science, 38 (1), 1-20. https://doi.org/10.1287/mksc.2018.1123
  21. M. Wan et al. (2017). Modeling Consumer Preferences and Price Sensitivities from Large-scale Grocery Shopping Transaction Logs. In Proceedings of the 26th International Conference on World Wide Web.. 1103-1112.
  22. S. Ahtey, D. Blei, R. Donnelly, F. Ruiz & T. Schmidt. (2018). Estimating Heterogeneous Consumer Preferences for Restaurants and Travel Time Using Mobile Location Data. In AEA Papers and Proceedings, 108, 64-67.
  23. F. J. Ruiz, S. Athey & D. M. Blei. (2017) Shopper: A Probabilistic Model of Consumer Choice with Substitutes and Complements. arXiv preprint arXiv:1711.03560
  24. J. L. Loyer, E. Henriques, M. Fontul & S. Wiseall. (2016). Comparison of Machine Learning Methods Applied to the Estimation of Manufacturing Cost of Jet Engine Components. International Journal of Produ ction Economics 178, 109-119. https://doi.org/10.1016/j.ijpe.2016.05.006
  25. M. K. Shin. (2018.8.17.). At Logistic and Manufacturing Site."Well-made AI, I Do Not Envy Ten Workers". Dong-A Ilbo. https://www.donga.com/news/Economy/article/all/20180816/91547679/1
  26. D. Acemoglu, & P. Restrepo. (2018). Artificial Intelligence, Automation and Work. National Bureau of Economic Research Working Papers 24196.
  27. N. Wingfield (2017. 9. 10). As Amazon Pushes Forward with Robots, Workers Find New Roles. The New York Times. https://www.nytimes.com/2017/09/10/technology/amazon-robots-workers.html
  28. R. Evans & J. Gao. (2016). Deepmind AI Reduces Google Data Centre Cooling Bill by 40%. DeepMind blog 20. https://deepmind.com/blog/article/deepmind-ai-reduces-google-data-centre-cooling-bill-40
  29. H. S. Lee et al. (2020.7.28.) LG, Automating Production in Secondary Partners Using AI and Big-Data. Maeil Business Newspaper. https://www.mk.co.kr/news/special-edition/view/2020/07/768385/
  30. J. W. Jo (2020). Case Studies for Insurance Service Marketing Using Artificial Intelligence(AI) in the InsurTech Industry. Journal of Digital Convergence, 18(10), 175-180. DOI : 10.14400/JDC.2020.18.10.175
  31. S. S. Lee, L. H. Yoo & J. H. KIM. (2020). An Analysis of Public Perception on Artificial Intelligence (AI) Education Using Big Data: Based on News Articles and Twitter. Journal of Digital Convergence, 18(6), 9-16. DOI : 10.14400/JDC.2020.18.6.009
  32. H. J. Han, K. J. Kim & H. S. Kwon. (2020). The Analysis of Elementary School Teachers' Perception of Using Artificial Intelligence in Education. Journal of Digital Convergence, 18(7), 47-56. DOI : 10.14400/JDC.2020.18.7.047
  33. S. Hwang & Y. J. Nam. (2020). The Role of Confidence in Government in Acceptance Intention towards Artificial Intelligence. Journal of Digital Convergence, 18(8), 217-224. DOI : 10.14400/JDC.2020.18.8.217
  34. Y. H. Ko & C. S. Leem. (2021). The Influence of AI Technology Acceptance and Ethical Awareness towards Intention to Use. Journal of Digital Convergence, 19(3), 217-225. DOI : 10.14400/JDC.2021.19.3.217
  35. S. H. Noh (2020). Analysis of Issues Related to Artificial Intelligence Based on Topic Modeling. Journal of Digital Convergence, 18(5), 75-87. DOI : 10.14400/JDC.2020.18.5.075