References
- Korean Statistical Information Service(2021). Population dynamics and dynamics rate. KOSIS(Online). https://kosis.kr/statHtml/statHtml.do?orgId=101&tblId=DT_1B8000F&conn_path=I2
- H. S. Lee. & S. J. Kang. (2020). Factors Influencing Post-traumatic Growth in Mothers with Premature Infants Admitted to the Neonatal Intensive Care Unit. Child Health Nursing Research, 26(2), 267-276. DOI : 10.4094/chnr.2020.26.2.267
- Yuri Lee. (2016). A Comparative Study on the Support Policy for Prematurity in Some OECD Countries. Health and Social Welfare Review, 36(4), 63-96. DOI : 10.15709/hswr.2016.36.4.63
- B. H. Kang, K. A. Jung, W. H. Hahn, K. S. Shim, J. Y. Chang & C. W. Bae. (2011). Regional Analysis on the Incidence of Preterm and Low Birth Weight Infant and the Current Situation on the Neonatal Intensive Care Units in Korea, 2009. Journal of the Korean Society of Neonatology, 18(1), 70. DOI : 10.5385/jksn.2011.18.1.70
- L. Turgeman, J. H. May & R. Sciulli. (2017). Insights from a machine learning model for predicting the hospital Length of Stay (LOS) at the time of admission. Expert Systems with Applications, 78, 376-385. DOI : 10.1016/j.eswa.2017.02.023
- S. E. Seaton, L. Barker, E. S. Draper, K. R. Abrams, N. Modi & B. N. Manktelow. (2018). Estimating neonatal length of stay for babies born very preterm. Archives of Disease in Childhood - Fetal and Neonatal Edition, 104(2), F182-F186. DOI : 10.1136/archdischild-2017-314405
- Health insurance review and Assessment services. (2019). Results of the 1st neonatal intensive care unit adequacy evaluation. HIRA(Online). https://www.hira.or.kr/cms/open/04/04/12/2019_07.pdf
- H. C. Lee, M. V. Bennett, J. Schulman & J. B. Gould. (2013). Accounting for variation in length of NICU stay for extremely low birth weight infants. Journal of Perinatology, 33(11), 872-876. DOI : 10.1038/jp.2013.92
- C. Li et al. (2019). Prediction of Length of Stay on the Intensive Care Unit Based on Least Absolute Shrinkage and Selection Operator. IEEE Access, 7, 110710-110721. DOI : 10.1109/access.2019.2934166
- S. Grampurohit & S. Sunkad. (2020). Hospital Length of Stay Prediction using Regression Models. In 2020 IEEE International Conference for Innovation in Technology (INOCON). IEEE. DOI : 10.1109/inocon50539.2020.9298294
- H. Baek, M. Cho, S. Kim, H. Hwang, M. Song, & S. Yoo. (2018). Analysis of length of hospital stay using electronic health records: A statistical and data mining approach. PLOS ONE, 13(4), e0195901. DOI : 10.1371/journal.pone.0195901
- G. J. Bender, D. Koestler, H. Ombao, M. McCourt, B. Alskinis, L. P. Rubin & J. F. Padbury. (2013). Neonatal intensive care unit: predictive models for length of stay. Journal of Perinatology, 33(2), 147-153. DOI : 10.1038/jp.2012.62
- B. K. Choi, S. W. Ham, C. H. Kim, J. S. Seo, M. H. Park, & S. H. Kang. (2018). Development of Predictive Model for Length of Stay(LOS) in Acute Stroke Patients using Artificial Intelligence. Journal of Digital Convergence, 16(1), 231-242. DOI : 10.14400/JDC.2018.16.1.231
- S. Bacchi, Y. Tan, L. Oakden-Rayner, J. Jannes, T. Kleinig & S. Koblar. (2020). Machine Learning in the Prediction of Medical Inpatient Length of Stay. Internal Medicine Journal. DOI : 10.1111/imj.14962
- H. Singh et al. (2021). Designing a bed-side system for predicting length of stay in a neonatal intensive care unit. Scientific Reports, 11(1). DOI : 10.1038/s41598-021-82957-z
- B. Thompson, K. O. Elish, and R. Steele. (2018). Machine Learning-Based Prediction of Prolonged Length of Stay in Newborns. In 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA). DOI : 10.1109/ICMLA.2018.00236
- D. J. Whellan et al. (2011). (2011). Predictors of Hospital Length of Stay in Heart Failure: Findings from Get With the Guidelines. Journal of Cardiac Failure, 17(8), 649-656. DOI : 10.1016/j.cardfail.2011.04.005
- J. H. Park & S. H. Kang. (2019). A Study on the Development of Predictive Model for Severity-Adjusted Length of Stay in Nervous System Patients Using Machine Learning. Health and Social Welfare Review, 39(1), 390-427. DOI : 10.15709/hswr.2019.39.1.390
- J. B. Lee & H. Woo. (2020). Determinants of Length of Stay in Ischemic Heart Disease Patients. Journal of Health Informatics and Statistics, 45(1), 52-59. DOI : 10.21032/jhis.2020.45.1.52
- Y. H. Choi, Y. J. Kim & S. H. Kang. (2015). The Development of Convergence Bench-making system on length of stay. Journal of digital convergence, 13(5), 89-99. DOI : 10.14400/JDC.2015.13.5.89
- S. O. Hong, Y. T. Kim, J. H. Park & S. H. Kang (2015). The Variation of Factors of Severity-Adjusted Length of Stay (LOS) in Injury of Neck. Health and Social Welfare Review, 35(2), 561-583. DOI : 10.15709/hswr.2015.35.2.561
- M. Kuhn, (2008) Building Predictive Models inRUsing thecaretPackage. Journal of Statistical Software, 28(5). DOI : 10.18637/jss.v028.i05
- J. Elrod et al. (2021). Using Artificial Intelligence to Obtain More Evidence? Prediction of Length of Hospitalization in Pediatric Burn Patients. Frontiers in Pediatrics, 8. DOI : 10.3389/fped.2020.613736
- Y. C. Woo, S. Y. Lee, W. Choi, C. W. Ahn & O. K. Baek. (2019). Trend of Utilization of Machine Learning Technology for Digital Healthcare. Data Analysis, Electronics and Telecommunications Trends, 34(1), 98-110. DOI : 10.22648/ETRI.2019.J.340109
- Z. Zhang, Y. Zhao, A. Canes, D. Steinberg & O. Lyashevska. (2019). Predictive analytics with gradient boosting in clinical medicine. Annals of translational medicine, 7(7), 152-152. DOI : 10.21037/atm.2019.03.29
- Y. Zhang & A. Haghani. (2015). A gradient boosting method to improve travel time prediction. Transportation Research Part C: Emerging Technologies, 58, 308-324. DOI : 10.1016/j.trc.2015.02.019
- P. F. (Jennifer) Tsai et al. (2016). Length of Hospital Stay Prediction at the Admission Stage for Cardiology Patients Using Artificial Neural Network. Journal of Healthcare Engineering, 2016, 1-11. DOI : 10.1155/2016/7035463
- Q. Shao, R. C. Rowe, and P. York. (2007). Investigation of an artificial intelligence technology-Model trees. European Journal of Pharmaceutical Sciences, 31(2), 137-144. DOI : 10.1016/j.ejps.2007.03.004