DOI QR코드

DOI QR Code

수직형 스마트 팜의 적정 생육환경 조성을 위한 건축 시스템 개발 - 수직형 스마트 팜에 최적화된 내부 공기 균일성 향상에 대한 연구 -

Development of Building System for Achieving an Optimal Growth Environment in a Vertical Smart Farm

  • 김한돈 (서울과학기술대학교 건축과) ;
  • 이정아 (서울과학기술대학교 건축과) ;
  • 최세은 (서울과학기술대학교 건축학부) ;
  • 장현승 (서울과학기술대학교 건축학부) ;
  • 김지민 (서울과학기술대학교 건축학부)
  • Kim, Handon (Architectural Engineering Program, School of Architecture, Seoul National University of Science and Technology) ;
  • Lee, Jeonga (Architectural Engineering Program, School of Architecture, Seoul National University of Science and Technology) ;
  • Choi, Seun (Architectural Engineering Program, School of Architecture, Seoul National University of Science and Technology) ;
  • Jang, Hyounseung (Architectural Engineering Program, School of Architecture, Seoul National University of Science and Technology) ;
  • Kim, Jimin (Architectural Engineering Program, School of Architecture, Seoul National University of Science and Technology)
  • 투고 : 2021.03.31
  • 심사 : 2021.05.11
  • 발행 : 2021.07.31

초록

지구온난화 및 기후변화에 대한 전문 연구기관인 IPCC에 따르면 인간은 기후 시스템에 영향을 끼치고 있다. 이러한 기후 시스템의 변화는 기존 생육환경을 변화시켜 농업 분야의 식재료 공급에 문제를 야기할 수 있다. 이 문제를 해결하기 위해 수직형 팜은 안정적인 식재료의 공급을 위한 좋은 대안이 될 수 있다. 수직형 스마트 팜은 농작물의 생육환경 유지 및 관리에 깊은 관심을 쏟고 있음에도 불구하고 건축 공간에 온도, 습도, 조도, 산소, CO2 농도 등을 균일하게 구현하는 데에는 어려움이 있다. 공기의 균일성 확보를 위해 CFD 분석을 진행한 결과 주목할 만한 결과는 수직형 스마트 팜 내의 공기 균일성을 위해서는 적합한 CO2 농도를 장기간 지속적으로 분사하는 것이 유리하다는 것이다. 이 결과를 통해 수직형 스마트 팜에 최적화 된 생육환경 시스템을 효율적으로 계획할 수 있다. 본 연구를 기초로 수직형 스마트 팜의 최적화된 생육환경을 조성하여 효율적인 작물이 생산이 이루어진다면 농업 분야의 발전에 이바지 할 수 있을 것이다.

According to the IPCC, humans are influencing the climate system. Such changes in the climate system can cause problems in the supply of food ingredients in the agricultural field by changing the existing growing environment. To solve this problem, vertical farms can be a good alternative for a stable supply of food ingredients. Although the vertical smart farm pays close attention to maintaining and managing the growing environment of crops, it is difficult to uniformly implement temperature, humidity, illumination, oxygen, and carbon dioxide concentrations in the building space. As a result of conducting computational fluid dynamics analysis to ensure air uniformity, a remarkable result is that it is advantageous to continuously spray suitable carbon dioxide CO2 concentrations for a long period of time for air uniformity in a vertical smart farm. Through this result, it is possible to efficiently plan a growing environment system optimized for a vertical smart farm. Based on this study, if efficient crops are produced by creating an optimized growing environment for vertical smart farms, it will be able to contribute to the development of the agricultural field.

키워드

과제정보

본 연구는 서울과학기술대학교 교내연구비의 지원으로 수행된 결과의 일부임.

참고문헌

  1. Cho, J.K., Suh, W.B., and Woo, J.S. (2020). "CFD-based Comparison Study of Hot Aisle Containment and Cold Aisle Containment Solutions in High-density Data Centers." Korean Journal of Air-Conditioning and Refrigeration Engineering, 32(9), pp. 419-434. https://doi.org/10.6110/kjacr.2020.32.9.419
  2. Climate Change Science Program (US). (2014). Climate change impacts in the United States, highlights: US national climate assessment. US Global Change Research Program.
  3. Fan, R., Liu, H., Zhou, S., He, Z., Zhang, X., Liu, K., Wang, J., Yang, Q., Zheng, Y., and Lu, W. (2020). "CFD simulation of the airflow uniformity in the plant factory." In IOP Conference Series: Earth and Environmental Science, 560(1), p. 012074, IOP Publishing.
  4. Hwang, H.S., Lee, S.H., and Han, S.H. (2020). "Estimation of Ventilation Efficiency to Improve Growing Conditions in Container Smart Farms." Transactions of the Korean Society of Mechanical Engineers - A, 44(11), pp. 873-879. https://doi.org/10.3795/KSME-A.2020.44.11.873
  5. Jin, D.R., Kim, Y.H., and Park, H.M.. (2018). "Case Study of Vertical Farms Using Japanese Buildings." Journal of Korea Institute of Ecological Architecture and Environment, 18(1), pp. 47-56.
  6. Lee, T.S., Kang G.C., Kim, H.K., Moon, J.P., Oh, S.S., and Kwon, J.K. (2017). "Analysis of Air Temperature and Humidity Distributions and Energy Consumptions according to Use of Air Circulation Fans in a Single-span Greenhouse." The Korean Society For BioEnvironment Control, 26(4), pp. 276-282.
  7. Patil, A., and Baul, S. (2019). Vertical Farming Market by Component and Growth Mechanism : Global Opportunity Analysis and Industry Forecast, 2019-2026, Allied Market Research, 2019.
  8. Praeger, U., Jedermann, R., Sellwig, M., Neuwald, D.A., Hartgenbusch, N., Borysov, M., Truppel, I., Scaar, H., and Geyer, M. (2020). "Airflow distribution in an apple storage room." Journal of Food Engineering , 269, 109746. https://doi.org/10.1016/j.jfoodeng.2019.109746
  9. Ryu, K.J., Son, J.H., Han, C.W., and Nah, K.D. (2017). "A study on the design of air conditioning system in the mushroom cultivation greenhouse." Journal of the Korea Academia-Industrial, 18(2), pp. 743-750.
  10. Zhang, Y., and Kacira, M. (2018). "Air Distribution and Its Uniformity." In Smart Plant Factory, pp. 153-166. Springer, Singapore.
  11. Zhang, Y., Yasutake, D., Hidaka, K., Kitano, M., and Okayasu, T. (2020). "CFD analysis for evaluating and optimizing spatial distribution of CO2 concentration in a strawberry greenhouse under different CO2 enrichment methods." Computers and Electronics in Agriculture, 179, 105811. https://doi.org/10.1016/j.compag.2020.105811
  12. Zhou, S., Liu, H., Fan, R., He, Z., Zhang, Y., Chen, Y., Sun, X., Zhou, X., Yang, Q., Zheng, Y., and Lu, W. (2020). "Temperature field simulation using CFD in the plant factory." In IOP Conference Series: Earth and Environmental Science , 560(1), p. 012036. IOP Publishing.