DOI QR코드

DOI QR Code

S-NOETHERIAN IN BI-AMALGAMATIONS

  • Kim, Hwankoo (Division of Computer Engineering Hoseo University) ;
  • Mahdou, Najib (Laboratory of Modeling and Mathematical Structures Department of Mathematics Faculty of Science and Technology of Fez) ;
  • Zahir, Youssef (Department of Mathematics Faculty of Sciences of Rabat, Mohammed-V University in Rabat)
  • Received : 2020.09.14
  • Accepted : 2021.03.12
  • Published : 2021.07.31

Abstract

This paper establishes necessary and sufficient conditions for a bi-amalgamation to inherit the S-Noetherian property. The new results compare to previous works carried on various settings of duplications and amalgamations, and capitalize on recent results on bi-amalgamations. Our results allow us to construct new and original examples of rings satisfying the S-Noetherian property.

Keywords

Acknowledgement

The authors would like to express their sincere thanks for the referee for his/her careful reading and helpful comments, which have greatly improved this paper.

References

  1. D. D. Anderson and T. Dumitrescu, S-Noetherian rings, Comm. Algebra 30 (2002), no. 9, 4407-4416. https://doi.org/10.1081/AGB-120013328
  2. D. D. Anderson and M. Winders, Idealization of a module, J. Commut. Algebra 1 (2009), no. 1, 3-56. https://doi.org/10.1216/JCA-2009-1-1-3
  3. M. B. Boisen, Jr., and P. B. Sheldon, CPI-extensions: overrings of integral domains with special prime spectrums, Canadian J. Math. 29 (1977), no. 4, 722-737. https://doi.org/10.4153/CJM-1977-076-6
  4. M. Chhiti, M. Jarrar, S. Kabbaj, and N. Mahdou, Prufer conditions in an amalgamated duplication of a ring along an ideal, Comm. Algebra 43 (2015), no. 1, 249-261. https://doi.org/10.1080/00927872.2014.897575
  5. M. D'Anna, A construction of Gorenstein rings, J. Algebra 306 (2006), no. 2, 507-519. https://doi.org/10.1016/j.jalgebra.2005.12.023
  6. M. D'Anna, C. A. Finocchiaro, and M. Fontana, Amalgamated algebras along an ideal, in Commutative algebra and its applications, 155-172, Walter de Gruyter, Berlin, 2009.
  7. M. D'Anna, C. A. Finocchiaro, and M. Fontana, Properties of chains of prime ideals in an amalgamated algebra along an ideal, J. Pure Appl. Algebra 214 (2010), no. 9, 1633-1641. https://doi.org/10.1016/j.jpaa.2009.12.008
  8. M. D'Anna and M. Fontana, The amalgamated duplication of a ring along a multiplicative-canonical ideal, Ark. Mat. 45 (2007), no. 2, 241-252. https://doi.org/10.1007/s11512-006-0038-1
  9. M. D'Anna and M. Fontana, An amalgamated duplication of a ring along an ideal: the basic properties, J. Algebra Appl. 6 (2007), no. 3, 443-459. https://doi.org/10.1142/S0219498807002326
  10. T. Dumitrescu, N. Mahdou, and Y. Zahir, Radical factorization for trivial extensions and amalgamated duplication rings, J. Algebra Appl. 20 (2021), no. 2, 2150025, 10 pp. https://doi.org/10.1142/S0219498821500250
  11. M. El Ouarrachi and N. Mahdou, Coherence in bi-amalgamated algebras along ideals, in Homological and combinatorial methods in algebra, 127-138, Springer Proc. Math. Stat., 228, Springer, Cham, 2018. https://doi.org/10.1007/978-3-319-74195-6_13
  12. A. Hamed and A. Malek, S-prime ideals of a commutative ring, Beitr. Algebra Geom. 61 (2020), no. 3, 533-542. https://doi.org/10.1007/s13366-019-00476-5
  13. J. A. Huckaba, Commutative Rings with Zero Divisors, Monographs and Textbooks in Pure and Applied Mathematics, 117, Marcel Dekker, Inc., New York, 1988.
  14. S. Kabbaj, K. Louartiti, and M. Tamekkante, Bi-amalgamated algebras along ideals, J. Commut. Algebra 9 (2017), no. 1, 65-87. https://doi.org/10.1216/JCA-2017-9-1-65
  15. S. Kabbaj, N. Mahdou, and M. A. S. Moutui, Bi-amalgamations subject to the arithmetical property, J. Algebra Appl. 16 (2017), no. 2, 1750030, 11 pp. https://doi.org/10.1142/S021949881750030X
  16. J. W. Lim and D. Y. Oh, S-Noetherian properties on amalgamated algebras along an ideal, J. Pure Appl. Algebra 218 (2014), no. 6, 1075-1080. https://doi.org/10.1016/j.jpaa.2013.11.003
  17. Z. Liu, On S-Noetherian rings, Arch. Math. (Brno) 43 (2007), no. 1, 55-60.
  18. N. Mahdou and M. A. S. Moutui, Gaussian and Prufer conditions in bi-amalgamated algebras, Czechoslovak Math. J. 70(145) (2020), no. 2, 381-391. https://doi.org/10.21136/CMJ.2019.0335-18
  19. C. Pedrini, Incollamenti di ideali primi e gruppi di Picard, Rend. Sem. Mat. Univ. Padova 48 (1972), 39-66 (1973).
  20. E. S. Sevim, T. Arabaci, U. Tekir, and S. Koc, On S-prime submodules, Turkish J. Math. 43 (2019), no. 2, 1036-1046. https://doi.org/10.3906/mat-1808-50
  21. G. Tamone, Sugli incollamenti di ideali primi, Boll. Un. Mat. Ital. B (5) 14 (1977), no. 3, 810-825.
  22. C. Traverso, Seminormality and Picard group, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 24 (1970), 585-595.
  23. F. Wang and H. Kim, Foundations of Commutative Rings and Their Modules, Algebra and Applications, 22, Springer, Singapore, 2016. https://doi.org/10.1007/978-981-10-3337-7
  24. H. Yanagihara, On glueings of prime ideals, Hiroshima Math. J. 10 (1980), no. 2, 351-363. http://projecteuclid.org/euclid.hmj/1206134458 https://doi.org/10.32917/hmj/1206134458