Acknowledgement
The authors would like to express their sincere thanks for the referee for his/her careful reading and helpful comments, which have greatly improved this paper.
References
- D. D. Anderson and T. Dumitrescu, S-Noetherian rings, Comm. Algebra 30 (2002), no. 9, 4407-4416. https://doi.org/10.1081/AGB-120013328
- D. D. Anderson and M. Winders, Idealization of a module, J. Commut. Algebra 1 (2009), no. 1, 3-56. https://doi.org/10.1216/JCA-2009-1-1-3
- M. B. Boisen, Jr., and P. B. Sheldon, CPI-extensions: overrings of integral domains with special prime spectrums, Canadian J. Math. 29 (1977), no. 4, 722-737. https://doi.org/10.4153/CJM-1977-076-6
- M. Chhiti, M. Jarrar, S. Kabbaj, and N. Mahdou, Prufer conditions in an amalgamated duplication of a ring along an ideal, Comm. Algebra 43 (2015), no. 1, 249-261. https://doi.org/10.1080/00927872.2014.897575
- M. D'Anna, A construction of Gorenstein rings, J. Algebra 306 (2006), no. 2, 507-519. https://doi.org/10.1016/j.jalgebra.2005.12.023
- M. D'Anna, C. A. Finocchiaro, and M. Fontana, Amalgamated algebras along an ideal, in Commutative algebra and its applications, 155-172, Walter de Gruyter, Berlin, 2009.
- M. D'Anna, C. A. Finocchiaro, and M. Fontana, Properties of chains of prime ideals in an amalgamated algebra along an ideal, J. Pure Appl. Algebra 214 (2010), no. 9, 1633-1641. https://doi.org/10.1016/j.jpaa.2009.12.008
- M. D'Anna and M. Fontana, The amalgamated duplication of a ring along a multiplicative-canonical ideal, Ark. Mat. 45 (2007), no. 2, 241-252. https://doi.org/10.1007/s11512-006-0038-1
- M. D'Anna and M. Fontana, An amalgamated duplication of a ring along an ideal: the basic properties, J. Algebra Appl. 6 (2007), no. 3, 443-459. https://doi.org/10.1142/S0219498807002326
- T. Dumitrescu, N. Mahdou, and Y. Zahir, Radical factorization for trivial extensions and amalgamated duplication rings, J. Algebra Appl. 20 (2021), no. 2, 2150025, 10 pp. https://doi.org/10.1142/S0219498821500250
- M. El Ouarrachi and N. Mahdou, Coherence in bi-amalgamated algebras along ideals, in Homological and combinatorial methods in algebra, 127-138, Springer Proc. Math. Stat., 228, Springer, Cham, 2018. https://doi.org/10.1007/978-3-319-74195-6_13
- A. Hamed and A. Malek, S-prime ideals of a commutative ring, Beitr. Algebra Geom. 61 (2020), no. 3, 533-542. https://doi.org/10.1007/s13366-019-00476-5
- J. A. Huckaba, Commutative Rings with Zero Divisors, Monographs and Textbooks in Pure and Applied Mathematics, 117, Marcel Dekker, Inc., New York, 1988.
- S. Kabbaj, K. Louartiti, and M. Tamekkante, Bi-amalgamated algebras along ideals, J. Commut. Algebra 9 (2017), no. 1, 65-87. https://doi.org/10.1216/JCA-2017-9-1-65
- S. Kabbaj, N. Mahdou, and M. A. S. Moutui, Bi-amalgamations subject to the arithmetical property, J. Algebra Appl. 16 (2017), no. 2, 1750030, 11 pp. https://doi.org/10.1142/S021949881750030X
- J. W. Lim and D. Y. Oh, S-Noetherian properties on amalgamated algebras along an ideal, J. Pure Appl. Algebra 218 (2014), no. 6, 1075-1080. https://doi.org/10.1016/j.jpaa.2013.11.003
- Z. Liu, On S-Noetherian rings, Arch. Math. (Brno) 43 (2007), no. 1, 55-60.
- N. Mahdou and M. A. S. Moutui, Gaussian and Prufer conditions in bi-amalgamated algebras, Czechoslovak Math. J. 70(145) (2020), no. 2, 381-391. https://doi.org/10.21136/CMJ.2019.0335-18
- C. Pedrini, Incollamenti di ideali primi e gruppi di Picard, Rend. Sem. Mat. Univ. Padova 48 (1972), 39-66 (1973).
- E. S. Sevim, T. Arabaci, U. Tekir, and S. Koc, On S-prime submodules, Turkish J. Math. 43 (2019), no. 2, 1036-1046. https://doi.org/10.3906/mat-1808-50
- G. Tamone, Sugli incollamenti di ideali primi, Boll. Un. Mat. Ital. B (5) 14 (1977), no. 3, 810-825.
- C. Traverso, Seminormality and Picard group, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 24 (1970), 585-595.
- F. Wang and H. Kim, Foundations of Commutative Rings and Their Modules, Algebra and Applications, 22, Springer, Singapore, 2016. https://doi.org/10.1007/978-981-10-3337-7
- H. Yanagihara, On glueings of prime ideals, Hiroshima Math. J. 10 (1980), no. 2, 351-363. http://projecteuclid.org/euclid.hmj/1206134458 https://doi.org/10.32917/hmj/1206134458